所属成套资源:人教版七年级数学下册尖子生培优题典专题特训(原卷版+解析)
- 人教版七年级数学下册尖子生培优题典 专题5.4平移专项提升训练(重难点培优)(原卷版+解析) 试卷 2 次下载
- 人教版七年级数学下册尖子生培优题典 专题5.2平行线的判定专项提升训练(重难点培优)(原卷版+解析) 试卷 2 次下载
- 人教版七年级数学下册尖子生培优题典 专题5.5第5章相交线与平行线单元测试(基础过关卷)(原卷版+解析) 试卷 1 次下载
- 人教版七年级数学下册尖子生培优题典 专题5.7平行线的性质与判定大题专项提升训练(填空型问题,重难点培优30题)(原卷版+解析) 试卷 1 次下载
- 人教版七年级数学下册尖子生培优题典 专题5.8平行线的性质与判定大题专项提升训练(基础篇,重难点培优30题)(原卷版+解析) 试卷 2 次下载
人教版七年级数学下册尖子生培优题典 专题5.3平行线的性质专项提升训练(重难点培优)(原卷版+解析)
展开
这是一份人教版七年级数学下册尖子生培优题典 专题5.3平行线的性质专项提升训练(重难点培优)(原卷版+解析),共28页。
2022-2023学年七年级数学下册尖子生培优题典【人教版】专题5.3平行线的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022秋•碑林区校级期中)下列语句是命题的是( )A.画出两个相等的角 B.所有的直角都相等吗? C.延长线段AB到C,使得BC=BA D.两直线平行,内错角相等2.(2022•谷城县二模)已知,直线m∥n,将含30°的直角三角板按照如图位置放置,∠1=25°,则∠2等于( )A.35° B.45° C.55° D.65°3.(2022秋•开福区校级期中)如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AEC的大小为( )A.55° B.65° C.70° D.80°4.(2022秋•九龙坡区校级期中)如图,直线a∥b,将一个含30°角的三角尺按如图所示的位置放置,若∠1=20°,则∠2的度数为( )A.150° B.140° C.130° D.120°5.(2022秋•道里区校级月考)有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行(2)相等的两个角是对顶角(3)直线外一点到这条直线的垂线段,叫做这点到直线的距离(4)垂直于同一条直线的两直线平行:其中正确的有( )A.0个 B.1个 C.2个 D.3个6.(2022秋•惠阳区校级月考)如图,AB∥EF,C点在EF上,∠EAC=∠ECA,BC平分∠DCF,且AC⊥BC.则关于结论①AE∥CD;②∠BDC=2∠1,下列判断正确的是( )A.①②都正确 B.①②都错误 C.①正确,②错误 D.①错误,②正确7.(2022春•章丘区期中)乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是( )A.23° B.26° C.28° D.32°8.(2022秋•临洮县校级月考)如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠1+∠2=( )A.15° B.25° C.30° D.45°9.(2022春•新罗区期中)如图,直线AB∥CD,点E、M分别为直线AB、CD上的点,点N为两平行线间的点,连接NE、NM,过点N作NG平分∠ENM,交直线CD于点G,过点N作NF⊥NG,交直线CD于点F,若∠BEN=θ(90°<θ<180°),则∠NGD﹣∠MNF的角度等于( )A.90° B.270°﹣θ C.90°+θ D.2θ﹣270°10.(2022春•仓山区校级期中)如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连接AB.∠ABM的平分线BC交PQ于点C,连接AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是( )A.18° B.27° C.30° D.45°二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•德惠市期中)命题“如果a=b,那么a3=b3”是 命题.(填“真”或“假”)12.(2022秋•浦东新区期中)将命题“两个全等三角形的周长相等”改写成“如果…那么…”的形式 .13.(2022秋•蓬安县期中)如图,AB∥CD,若∠A=40°,∠C=26°,则∠E= .14.(2022春•高新区校级月考)如图,将直尺与三角尺叠放在一起,如果∠1=28°,那么∠2的度数为 .15.(2022秋•浠水县期中)将直角三角板如图所示放置,∠ABC=60°,∠ACB=90°,∠A=30°,直线CE∥AB,BE平分∠ABC,在直线CE上确定一点D,满足∠BDC=45°,则∠EBD= .16.(2022春•长安区校级月考)将一副直角三角尺ABC和CDE按如图方式放置,其中直角顶点C重合,∠D=45°,∠A=30°.若DE∥BC,则∠1的度数为 .17.(2022秋•涪陵区校级期中)如图,在四边形ABCD中,AC为对角线,∠B=90°,AB=BC,AC=AD,在BC上取一点E,连接AE,DE.若∠DAC=2∠BAE,现有下列五个结论:①∠DEC=∠DAC;②∠BAE+∠ACD=90°;③AE平分∠BED;④DE=AB+BE;⑤S△ADC=S△CED+S△ABE;其中正确的命题是 .18.(2022春•玄武区校级期中)如图,AB∥CD,BE∥DF,∠B与∠D的平分线相交于点P,则∠P= °.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•道里区校级月考)完成下面推理过程,在括号内的横线上填空或填上推理依据.已知:AB∥CD,∠B+∠D=180°,求证:BC∥ED.证明:∵AB∥CD(已知),∴∠B=∠C( ).∵∠B+∠D=180°( ),∴∠C+∠D=180°( ),∴BC∥DE( ).20.(2022春•南海区校级月考)如图,已知直线a,b与直线c,d相交,∠1=∠2,∠3=110°,求∠4的度数.21.(2022春•重庆月考)如图,AF分别与BD、CE交于点G、H,∠1=55°,∠2=125°.若∠A=∠F,求证:∠C=∠D.22.(2022春•云阳县校级月考)如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.(1)当点P移动到AB、CD之间时,如图(1),此时∠APC与∠A、∠C有怎样的关系?请说明理由.(2)当点P移动到如图(2)的位置时,∠APC与∠A、∠C又有怎样的关系?请说明理由.23.(2022春•江岸区校级月考)如图,AB∥CD,点M、N分别在直线AB、CD上,点O在直线AB、CD之间,∠MON=90°.(1)求∠1+∠2的值;(2)如图2,直线EF交∠BMO、∠CNO的角平分线分别于点F、E,求∠NEF﹣∠MFE的值;(3)如图3,∠AMP=n∠OMP,∠DNQ=n∠ONQ,若∠P﹣∠Q=t°,则n= (用t表示).24.(2022春•重庆月考)综合与探究,问题情境:综合实践课上,王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF∥MN,点A,B分别为直线EF,MN上的一点,点P为平行线间一点且∠PAF=130°,∠PBN=120°,求∠APB度数;问题迁移(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM,ON于点A,D,直线n分别交OM,ON于点B,C,点P在射线OM上运动.①当点P在A,B(不与A,B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;②若点P不在线段AB上运动时(点P与点A,B,O三点都不重合),请你直接写出∠CPD,∠α,∠β间的数量关系.2022-2023学年七年级数学下册尖子生培优题典【人教版】专题5.3平行线的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022秋•碑林区校级期中)下列语句是命题的是( )A.画出两个相等的角 B.所有的直角都相等吗? C.延长线段AB到C,使得BC=BA D.两直线平行,内错角相等【分析】利用命题的定义判断即可.【解答】解:A.画出两个相等的角,没有对一件事情做出判断,故A选项不是命题,不符合题意;B.所有的直角都相等吗?是表示疑问的语句,而不是表示判断的语句,故选项B不符合题意;C.延长线段AB到C,使得BC=BA,不是表示判断的语句,故选项C不符合题意;D.两直线平行,内错角相等,是表示判断的语句,故D是命题,符合题意.故选:D.2.(2022•谷城县二模)已知,直线m∥n,将含30°的直角三角板按照如图位置放置,∠1=25°,则∠2等于( )A.35° B.45° C.55° D.65°【分析】根据对顶角的性质可以得出∠CDE=25°,然后利用30°的直角三角板可得∠ACB=30°,最后利用平行线的性质∠2=∠CEF=55°.【解答】解:如图:∵∠1=25°,∠1与∠CDE是对顶角,∴∠CDE=∠1=25°,∵∠ACB=30°,∴∠CEF=∠ACB+∠CDE=55°,∵m∥n,∴∠2=∠CEF=55°.故选:C.3.(2022秋•开福区校级期中)如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AEC的大小为( )A.55° B.65° C.70° D.80°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AEC的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠AEC=∠BAE=65°.故选:B.4.(2022秋•九龙坡区校级期中)如图,直线a∥b,将一个含30°角的三角尺按如图所示的位置放置,若∠1=20°,则∠2的度数为( )A.150° B.140° C.130° D.120°【分析】由题意得∠CAD=90°,∠C=30°,从而求得∠CAE=70°,由平行线的性质得∠CBF=∠CAE=70°,利用三角形的外角性质求得∠CHB=40°,从而可求∠2的度数.【解答】解:如图,由题意得:∠CAD=90°,∠C=30°,∵∠1=20°,∴∠CAE=180°﹣∠CAD﹣∠1=70°,∵a∥b,∴∠CBF=∠CAE=70°,∵∠CBF是△CBH的外角,∴∠CHB=∠CBF﹣∠C=40°,∴∠2=180°﹣∠CHB=140°.故选:B.5.(2022秋•道里区校级月考)有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行(2)相等的两个角是对顶角(3)直线外一点到这条直线的垂线段,叫做这点到直线的距离(4)垂直于同一条直线的两直线平行:其中正确的有( )A.0个 B.1个 C.2个 D.3个【分析】利用平行线的判定与性质,平行公理,点到直线的距离的定义对各项进行分析即可.【解答】解:(1)过直线外一点有且只有一条直线与这条直线平行,故(1)正确;(2)相等的两个角不一定是对顶角,故(2)错误;(3)直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,点到直线的距离是一个长度,而不是一个图形,故说法(3)错误;(4)在同一平面内,垂直于同一条直线的两直线平行,故(4)错误;综上所述,正确的只有1个.故选:B.6.(2022秋•惠阳区校级月考)如图,AB∥EF,C点在EF上,∠EAC=∠ECA,BC平分∠DCF,且AC⊥BC.则关于结论①AE∥CD;②∠BDC=2∠1,下列判断正确的是( )A.①②都正确 B.①②都错误 C.①正确,②错误 D.①错误,②正确【分析】由平行线的性质得出∠ECA=∠BAC,∠BCF=∠B,证出∠1+∠BCD=90°,∠ECA+∠BCF=90°,由角平分线定义得出∠BCD=∠BCF,得出∠1=∠ECA,AC平分∠DCE,证出∠EAC=∠1,得出AE∥CD,①正确;由∠1=∠ECA=∠BAC,∠BDC=∠BAC+∠1,得出∠BDC=2∠1,②正确;即可得出结论.【解答】解:∵AB∥EF,∴∠ECA=∠BAC,∠BCF=∠B,∵AC⊥BC,∴∠ACB=90°,∴∠1+∠BCD=90°,∠ECA+∠BCF=90°,∵BC平分∠DCF,∴∠BCD=∠BCF,∴∠1=∠ECA,∴AC平分∠DCE,∵∠EAC=∠ECA,∴∠EAC=∠1,∴AE∥CD,①正确;∵∠1=∠ECA=∠BAC,∠BDC=∠BAC+∠1,∴∠BDC=2∠1,②正确;故选:A.7.(2022春•章丘区期中)乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是( )A.23° B.26° C.28° D.32°【分析】延长DC交AE于点F.先利用平行线的性质求出∠EFD,再利用三角形外角和内角的关系求出∠E.【解答】解:延长DC交AE于点F.∵AB∥CD,∠BAE=92°,∴∠BAE=∠EFD=92°.∵∠DCE=∠EFC+∠E,∠DCE=115°,∠E=∠DCE﹣∠EFC=115°﹣92°=23°.故选:A.8.(2022秋•临洮县校级月考)如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠1+∠2=( )A.15° B.25° C.30° D.45°【分析】根据平行线的性质以及外角和定理,可求出其值.【解答】解:∵CE∥DF,∴∠CEA+∠DFB=180°,∵∠1+∠CEA=125°,∠2+DFB=85°,∴∠1+∠CEA+∠2+DFB=125°+85°,∴∠1+∠2=210°﹣180°=30°.故选:C.9.(2022春•新罗区期中)如图,直线AB∥CD,点E、M分别为直线AB、CD上的点,点N为两平行线间的点,连接NE、NM,过点N作NG平分∠ENM,交直线CD于点G,过点N作NF⊥NG,交直线CD于点F,若∠BEN=θ(90°<θ<180°),则∠NGD﹣∠MNF的角度等于( )A.90° B.270°﹣θ C.90°+θ D.2θ﹣270°【分析】过N点作NH∥AB,则AB∥NH∥CD,由平行线的性质得∠BEN+∠ENG+∠GNM+∠MNF+∠NFG=360°,进而由NG平分∠ENM和∠BEN=θ得∠GNM+∠GNM+∠MNF+∠NFG=360°﹣θ,再由得∠GNM+∠NFG=270°﹣θ,进而由外角定理得结果.【解答】解:过N点作NH∥AB,则AB∥NH∥CD,∴∠BEN+∠ENH=∠HNF+∠NFG=180°,∴∠BEN+∠ENH+∠HNF+∠NFG=360°,∴∠BEN+∠ENG+∠GNM+∠MNF+∠NFG=360°,∵∠BEN=θ,∴∠ENG+∠GNM+∠MNF+∠NFG=360°﹣θ,∵NG平分∠ENM,∴∠ENG=∠GNM,∴∠GNM+∠GNM+∠MNF+∠NFG=360°﹣θ,∵NF⊥NG,∴∠GNM+∠MNF=∠GNF=90°,∴∠GNM+90°+∠NFG=360°﹣θ,∴∠GNM+∠NFG=270°﹣θ,∵∠NGD=∠GNM+∠MNF+∠NFG,∴∠NGD﹣∠MNF=∠GNM+∠NFG=270°﹣θ,故选:B.10.(2022春•仓山区校级期中)如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连接AB.∠ABM的平分线BC交PQ于点C,连接AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是( )A.18° B.27° C.30° D.45°【分析】设∠DAE=α,则∠EAF=α,∠ACB=α,先求得∠BCE+∠CEA=180°,即可得到AE∥BC,进而得出∠ACB=∠CAE,即可得到∠DAE=18°,再依据Rt△ACD内角和即可得到∠ACD的度数.【解答】解:设∠DAE=α,则∠EAF=α,∠ACB=α,∵AD⊥PQ,AF⊥AB,∴∠BAF=∠ADE=90°,∴∠BAE=∠BAF+∠EAF=90°+α,∠CEA=∠ADE+∠DAE=90°+α,∴∠BAE=∠CEA,∵MN∥PQ,BC平分∠ABM,∴∠BCE=∠CBM=∠CBA,又∵∠ABC+∠BCE+∠CEA+∠BAE=360°,∴∠BCE+∠CEA=180°,∴AE∥BC,∴∠ACB=∠CAE,即α=45°,∴α=18°,∴∠DAE=18°,∴Rt△ACD中,∠ACD=90°﹣∠CAD=90°﹣(45°+18°)=27°,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•德惠市期中)命题“如果a=b,那么a3=b3”是 真 命题.(填“真”或“假”)【分析】根据有理数的乘方法则计算,判断即可.【解答】解:命题“如果a=b,那么a3=b3”是真命题,故答案为:真.12.(2022秋•浦东新区期中)将命题“两个全等三角形的周长相等”改写成“如果…那么…”的形式 如果两个三角形全等,那么它们的周长相等 .【分析】任何一个命题都可以写成“如果…那么…”的形式,如果是条件,那么是结论.【解答】解:将命题“两个全等三角形的周长相等”改写成“如果…,那么…”的形式:如果两个三角形全等,那么它们的周长相等,故答案为:如果两个三角形全等,那么它们的周长相等.13.(2022秋•蓬安县期中)如图,AB∥CD,若∠A=40°,∠C=26°,则∠E= 66° .【分析】过E作EF∥AB,根据平行线的性质可得∠A=∠1,∠C=∠2,然后即可求得∠AEC的度数.【解答】解:过E作EF∥AB.则EF∥CD,∴∠A=∠1,∠C=∠2,∴∠AEC=∠1+∠2=∠A+∠C=66°.故答案为:66°.14.(2022春•高新区校级月考)如图,将直尺与三角尺叠放在一起,如果∠1=28°,那么∠2的度数为 62° .【分析】先由两锐角互余求∠DAC度数,再由平行线的性质即可求解.【解答】解:如图,标注字母,由题意可得:∠BAC=90°,∠DAC=∠BAC﹣∠1=62°,∵EF∥AD,∴∠2=∠DAC=62°,故答案为:62°.15.(2022秋•浠水县期中)将直角三角板如图所示放置,∠ABC=60°,∠ACB=90°,∠A=30°,直线CE∥AB,BE平分∠ABC,在直线CE上确定一点D,满足∠BDC=45°,则∠EBD= 15°或105° .【分析】分两种情况:D在C的左边;D在C的右边;根据平行线的性质和角平分线的定义即可求解.【解答】解:D在C的左边,如图1:∵BE平分∠ABC,∴∠ABE=∠ABC=30°,∵CE∥AB,∴∠ABD=180°﹣∠BDC=135°,∴∠EBD=135°﹣30°=105°;D在C的右边,如图2:∵BE平分∠ABC,∴∠ABE=∠ABC=30°,∵CE∥AB,∴∠ABD=∠BDC=45°,∴∠EBD=45°﹣30°=15°.故∠EBD=15°或105°.故答案为:15°或105°.16.(2022春•长安区校级月考)将一副直角三角尺ABC和CDE按如图方式放置,其中直角顶点C重合,∠D=45°,∠A=30°.若DE∥BC,则∠1的度数为 105° .【分析】根据DE∥BC,得出∠E=∠ECB=45°,进而得出∠1=∠ECB+∠B即可.【解答】解:∵∠ACB=90°,∠A=30°,∴∠B=60°,∵DE∥BC,∴∠E=∠ECB=45°,∴∠1=∠ECB+∠B=45°+60°=105°,故答案为:105°.17.(2022秋•涪陵区校级期中)如图,在四边形ABCD中,AC为对角线,∠B=90°,AB=BC,AC=AD,在BC上取一点E,连接AE,DE.若∠DAC=2∠BAE,现有下列五个结论:①∠DEC=∠DAC;②∠BAE+∠ACD=90°;③AE平分∠BED;④DE=AB+BE;⑤S△ADC=S△CED+S△ABE;其中正确的命题是 ①②③④ .【分析】①设∠BAE=α,依次表示出∠DAC,∠ACD,∠DAE,∠DCE,从而计算得∠DAE+∠DCE=180°,从而得出点A、E、C、D共圆,进一步得出结果;②计算可得出结果;③可推出∠AEB=∠ADC,∠AED=∠ACD,进一步得出结果;④作AF⊥DE,可推出DF=AF=AB,BE=FE,进一步得出结果;⑤可推出△ADE的面积大于△ABC的面积,进而得出△AOD的面积大于△ABE与△COE的面积之和,进一步得出△ACD的面积大于△ABE与△CDE的面积之和.【解答】解:①设∠BAE=α,则∠DAC=2α,∵∠B=90°,AB=BC,∴∠BAC=∠ACB=45°,∴∠CAE=∠BAC﹣∠BAE=45°﹣α,∴∠DAE=∠DAC+∠CAE=2α+45﹣α=α+45°,∵AD=AC,∴∠ACD=∠ADC===90°﹣α,∴∠DCE=∠ACD+∠ACB=90°﹣α+45°=135°﹣α,∴∠DAE+∠DCE=180°,∴点A、E、C、D共圆,∴∠DEC=∠DAC,故①正确;②由①得:∠ACD=90°﹣α,∵∠BAE=α,∴∠ACD+∠BAE=90°,故②正确;③由①得:点A、E、C、D共圆,∴∠AED=∠ACD,∠AEB=∠ADC,∵∠ADC=∠ACD,∴∠AED=∠AEB,故③正确;④如图1,作AF⊥DE于F,由③得:AE平分∠BED,∵∠B=90°,∴AB=AF,∵点A、E、C、D共圆,∴∠ADE=∠ACB=45°,∴∠DAF=90°﹣∠ADE=45°,∴∠ADE=∠DAF,∴DF=AF,∵∠B=∠AFE=90°,∠AED=∠AEB,∴∠BAE=∠EAF,∴BE=EF,∴DE=DF+EF=AB+BE,故④正确;⑤如上图,∵AD=AC,AF=AB,∠AFD=∠B=90°,∴Rt△ADF≌Rt△ACB(HL),∴S△ADF+S△AEF>S△ACB,∴S△ADF+S△AEF﹣S△AOE>S△ACB﹣S△AOE,∴S△AOD>S△ABE+S△COE,∴S△AOD+S△COD>S△ABE+S△COE+S△COD,∴S△ACD>S△CDE+S△ABE,故⑤不正确,故答案为:①②③④.18.(2022春•玄武区校级期中)如图,AB∥CD,BE∥DF,∠B与∠D的平分线相交于点P,则∠P= 90 °.【分析】过点P作PG∥AB,过点E作EH∥AB,过点F作FM∥AB,延长CD到点N,利用平行线的判定和性质,结合角平分线的定义解答即可.【解答】解:过点P作PG∥AB,过点E作EH∥AB,过点F作FM∥AB,延长CD到点N,如图:∵PG∥AB,AB∥CD,∴AB∥PG∥CD,∴∠1=∠2,∠8=∠9,∵∠ABE与∠CDF的平分线相交于点P,∴∠1=∠ABE,∠9=∠CDF,∴∠BPD=∠2+∠8=∠1+∠9=(∠ABE+∠CDF),∵BE∥DF,∴∠3+∠4=∠5+∠6,∵EH∥AB,FM∥AB,AB∥CD,延长CD到点N,∴AB∥EH∥FM∥CN,∴∠ABE=∠3,∠4=∠5,∠6=∠7,∴∠ABE=∠7,∵∠7+∠CDF=180°,∴∠ABE+∠CDF=180°,∴∠BPD=(∠ABE+∠CDF)=×180°=90°.故答案为:90.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•道里区校级月考)完成下面推理过程,在括号内的横线上填空或填上推理依据.已知:AB∥CD,∠B+∠D=180°,求证:BC∥ED.证明:∵AB∥CD(已知),∴∠B=∠C( 两直线平行,内错角相等 ).∵∠B+∠D=180°( 已知 ),∴∠C+∠D=180°( 等量代换 ),∴BC∥DE( 同旁内角互补,两直线平行 ).【分析】由平行线的性质可得∠B=∠C,从而可得∠C+∠D=180°,即可判定BC∥DE.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),∵∠B+∠D=180°(已知),∴∠C+∠D=180°(等量代换),∴BC∥DE(同旁内角互补,两直线平行),故答案为:两直线平行,内错角相等;已知;等量代换;同旁内角互补,两直线平行.20.(2022春•南海区校级月考)如图,已知直线a,b与直线c,d相交,∠1=∠2,∠3=110°,求∠4的度数.【分析】根据“同位角相等,两直线平行”这一定理,可知a∥b,再根据“两直线平行,同位角相等”即可解答.【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠5=∠3=110°,∴∠4=180°﹣110°=70°,.21.(2022春•重庆月考)如图,AF分别与BD、CE交于点G、H,∠1=55°,∠2=125°.若∠A=∠F,求证:∠C=∠D.【分析】根据平行线的判定与性质进行推理论证即可.【解答】证明:因为∠2+∠AHC=180°,∠2=125°,所以∠AHC=180°﹣∠2=180°﹣125°=55°,因为∠1=55°,所以∠1=∠AHC,所以BD∥CE(同位角相等,两直线平行),所以∠ABD=∠C(两直线平行,同位角相等),因为∠A=∠F(已知),所以AC∥DF(内错角相等,两直线平行),所以∠ABD=∠D(两直线平行,内错角相等),所以∠C=∠D(等量代换).22.(2022春•云阳县校级月考)如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.(1)当点P移动到AB、CD之间时,如图(1),此时∠APC与∠A、∠C有怎样的关系?请说明理由.(2)当点P移动到如图(2)的位置时,∠APC与∠A、∠C又有怎样的关系?请说明理由.【分析】(1)延长AP后通过外角定理可得出结论;(2)延长BA到E,延长DC到F,利用内角和定理解答.【解答】解:(1)∠APC=∠A+∠C,理由如下:如图(1)延长AP交CD与点E.∵AB∥CD,∴∠A=∠AEC.又∵∠APC是△PCE的外角,∴∠APC=∠C+∠AEC.∴∠APC=∠A+∠C;(2)∠APC=360°﹣(∠A+∠C),理由如下:如图(2)延长BA到E,延长DC到F,由(1)得∠APC=∠PAE+∠PCF.∵∠PAE=180°﹣∠PAB,∠PCF=180°﹣∠PCD,∴∠APC=360°﹣(∠PAB+∠PCD).23.(2022春•江岸区校级月考)如图,AB∥CD,点M、N分别在直线AB、CD上,点O在直线AB、CD之间,∠MON=90°.(1)求∠1+∠2的值;(2)如图2,直线EF交∠BMO、∠CNO的角平分线分别于点F、E,求∠NEF﹣∠MFE的值;(3)如图3,∠AMP=n∠OMP,∠DNQ=n∠ONQ,若∠P﹣∠Q=t°,则n= (用t表示).【分析】(1)过点O作OE∥AB,易得AB∥OE∥CD,利用平行线的性质即可解答;(2)过点E作EP∥CD,过点F作FQ∥AB,所以EP∥FQ∥AB∥CD,再利用(1)中的结论以及角平分线的定义即可解答;(3)过点P作PS∥AB,过点Q作 QT∥AB,由(1)可知:∠BMO+∠DNO=∠MON=90°,又因为∠MPQ﹣∠NQP=(∠MPS+∠QPS)﹣(∠NQT+∠PQT)=t°,所以∠MPS﹣∠NQT=t°,即∠AMP﹣∠DNQ=t°,因为∠AMP=n∠OMP,∠AMP+∠OMP+∠BMO=180°,可得∠AMP=(180°﹣∠BMO),等量代换即可解答.【解答】解:(1)过点O作OE∥AB,如图:∵AB∥CD,∴OE∥AB∥CD,∴∠EON=∠1,∠EOM=∠2,∴∠1+∠2=∠EON+∠EOM=∠MON=90°;(2)过点E作EP∥CD,过点F作FQ∥AB,如图:∵AB∥CD,∴EP∥FQ∥AB∥CD,∵MF平分∠OMB,∴设∠BMF=∠OMF=α,∵EN平分∠ONC,∴设∠CNE=∠ONE=β,∠OND=180°﹣2β,由(1)得:∠DNO+∠BMO=90°,∴180°﹣2β+2α=90°,∴β﹣α=45°,又∵∠NEP=∠CNE=β,∠MFQ=∠BMF=α,∠PEF=∠QFE,∴∠NEF﹣∠MFE=(∠NEP+∠PEF)﹣(∠MFQ+∠QFE)=∠CNE﹣∠BMF=β﹣α=45°;(3)过点P作PS∥AB,过点Q作QT∥AB,如图:∵PS∥AB,∴∠SPM=∠AMP,∵QT∥AB,∴QT∥PS,∴∠TQP=∠QPS,∵AB∥CD,∴QT∥CD,∴∠DNQ=∠NQT,由(1)可知:∠BMO+∠DNO=∠MON=90°,又∵∠MPQ﹣∠NQP=(∠MPS+∠QPS)﹣(∠NQT+∠PQT)=t°,∴∠MPS﹣∠NQT=t°,∴∠AMP﹣∠DNQ=t°,∵∠AMP=n∠OMP,∠AMP+∠OMP+∠BMO=180°,∴∠AMP=(180°﹣∠BMO),∵∠DNQ=n∠ONQ,∠DNQ+∠ONQ=∠DNO,∴∠DNQ=∠DNO,∴(180°﹣∠BMO)﹣∠DNO=t°,∴﹣(∠BMO+∠DNO)=﹣=t°,∴n=.故答案为:.24.(2022春•重庆月考)综合与探究,问题情境:综合实践课上,王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF∥MN,点A,B分别为直线EF,MN上的一点,点P为平行线间一点且∠PAF=130°,∠PBN=120°,求∠APB度数;问题迁移(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM,ON于点A,D,直线n分别交OM,ON于点B,C,点P在射线OM上运动.①当点P在A,B(不与A,B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;②若点P不在线段AB上运动时(点P与点A,B,O三点都不重合),请你直接写出∠CPD,∠α,∠β间的数量关系.【分析】(1)过P作PT∥EF,由PT∥EF∥MN,得∠PAF+∠APT=180°,∠TPB+∠PBN=180°,即得∠PAF+∠PBN+∠APB=360°,把∠PAF=130°,∠PBN=120°代入即可求出∠APB度数;(2)①过P作PE∥AD交CD于E,由AD∥PE∥BC,得∠α=∠DPE,∠β=∠CPE,故∠CPD=∠DPE+∠CPE=∠α+∠β;②分两种情况:当P在BA延长线时,此时∠CPD=∠β﹣∠α;当P在BO之间时,此时∠CPD=∠α﹣∠β.【解答】解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:过P作PT∥EF,如图:∵EF∥MN,∴PT∥EF∥MN,∴∠PAF+∠APT=180°,∠TPB+∠PBN=180°,∴∠PAF+∠APT+∠TPB+∠PBN=360°,即∠PAF+∠PBN+∠APB=360°,∵∠PAF=130°,∠PBN=120°,∴∠APB=360°﹣∠PAF﹣∠PBN=360°﹣130°﹣120°=110°;(2)①∠CPD=∠α+∠β,理由如下:过P作PE∥AD交CD于E,如图:∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;②当P在BA延长线时,如图:此时∠CPD=∠β﹣∠α;当P在BO之间时,如图:此时∠CPD=∠α﹣∠β.