+河北省廊坊市第十六中学2023-2024学年八年级上学期期末数学试卷
展开
这是一份+河北省廊坊市第十六中学2023-2024学年八年级上学期期末数学试卷,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.三角形的两边长分别为4cm和7cm,此三角形第三边长可能是( )
A. 2cmB. 3cmC. 6cmD. 11cm
2.如图的尺规作图是作( )
A. 线段的垂直平分线
B. 一个角等于已知角
C. 一条直线的平行线
D. 一个角的平分线
3.如图,△ABC≌△EFD,∠A=50∘,∠ACB=35∘,则∠F的度数是( )
A. 35∘
B. 50∘
C. 55∘
D. 95∘
4.下列图形不是轴对称图形的是( )
A. B. C. D.
5.等腰三角形底边长为2,周长为10,则此三角形的腰长为( )
A. 8B. 4C. 3D. 2
6.下列计算正确的是( )
A. a2+a2=2a4B. a2⋅a3=a5C. a6÷a3=a2D. (2a)2=2a2
7.如果把分式xx−y中的x,y都扩大为原来的3倍,那么分式的值( )
A. 缩小为原来的3倍B. 不变C. 扩大为原来的3倍D. 扩大为原来的9倍
8.若多项式a2+ka+9可以写成一个整式的平方,则常数k的值可以为( )
A. 3B. 6C. 9D. 12
9.若分式x2−9x−3的值为0,则x的值为( )
A. 0B. 3C. −3D. 3或−3
10.在复习分式的化简运算时,老师把甲、乙两位同学的解答过程分别展示如下.则( )
A. 甲、乙都错B. 甲、乙都对C. 甲对,乙错D. 甲错,乙对
11.如图,已知△ABC的周长是36cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是( )
A. 48cm2B. 54cm2C. 60cm2D. 66cm2
12.在△ABC中,∠B=∠C=50∘,将△ABC沿图中虚线剪开,剪下的两个三角形不一定全等的是( )
A. B.
C. D.
二、填空题:本题共4小题,每小题3分,共12分。
13.计算ab⋅(a+1)的结果是______.
14.如图,∠1=60∘,∠A=20∘,则∠C=______度.
15.若分式x+1x(x−3)有意义,则x的取值范围是______.
16.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接E,F.给出下列五个结论:①AP=EF;②PD=EC;③∠PFE=∠BAP;④△APD一定是等腰三角形;⑤AP⊥EF.其中正确结论的序号是______.
三、解答题:本题共8小题,共72分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题8分)
计算
(1)4x2y⋅(xy2)2;
(2)(m+2n)(m−2n).
18.(本小题10分)
解下列分式方程:
(1)xx+1=2x3x+3+1;
(2)2x−2−4x2−4=1x+2.
19.(本小题8分)
如图,小明从点A出发,前进10m后向右转30∘,再前进10m后又向右转30∘,……,如此反复下去,直到她第一次回到出发点A,他所走的路径构成了一个正多边形.
(1)求小明一共走了多少米;
(2)求这个正多边形的内角和.
20.(本小题9分)
如图,在正方形网格中,△ABC的顶点C的坐标为(2,1).
(1)画出△ABC向下平移2个单位后的△A1B1C1
(2)画出△ABC关于y轴对称的△A2B2C2,并直接写出顶点C的对称点C2的坐标.
21.(本小题8分)
已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.
(1)若∠AOB=70∘,求∠EDC;
(2)求证:OE垂直平分DC.
22.(本小题8分)
在日历上,我们可以发现其中某些数满足一定的规律,如表是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交叉相乘,再相减,例如:7×13−6×14=7,17×23−16×24=7,不难发现,结果都是7.
(1)请完成填空:4×10−______×______=7.
(2)设最左边的数为n,请用含n的等式表示以上规律,并利用整式的运算对以上的规律加以证明.
23.(本小题8分)
2022年10月12日“天宫课堂”第三课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B两款物理实验套装,其中A款套装单价比B款套装单价贵20%,用7200元购买的A款套装数量比用5000元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.
24.(本小题13分)
在直线m上依次取互不重合的三个点D、A、E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.
【积累经验】
(1)如图1,当α=90∘时,猜想线段DE,BD,CE之间的数量关系是______;请说明理由;
【类比迁移】
(2)如图2,当0
相关试卷
这是一份河北省廊坊市2023-2024学年九年级上学期1月期末数学试题,共8页。
这是一份+河北省廊坊市霸州市部分学校2023-2024学年八年级上学期期末数学试卷+,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省廊坊市第十八中学2023-2024学年八年级上学期期末数学试题,共23页。试卷主要包含了判断正确的是等内容,欢迎下载使用。