还剩12页未读,
继续阅读
成套系列资料,整套一键下载
- 人教版七年级数学下册尖子生培优练习 专题8.3实际问题与二元一次方程组专项提升训练(重难点培优)(原卷版+解析) 试卷 0 次下载
- 人教版七年级数学下册尖子生培优练习 专题8.4三元一次方程组专项提升训练(重难点培优)(原卷版+解析) 试卷 0 次下载
- 人教版七年级数学下册尖子生培优练习 专题9.4含参数的不等式解集问题专项提升训练(重难点培优)(原卷版+解析) 试卷 2 次下载
- 人教版七年级数学下册尖子生培优练习 专题9.5不等式(组)整数解问题专项提升训练(重难点培优)(原卷版+解析) 试卷 0 次下载
- 人教版七年级数学下册尖子生培优练习 专题9.6解一元一次不等式(组)大题专练(重难点培优30题)(原卷版+解析) 试卷 0 次下载
人教版七年级数学下册尖子生培优练习 专题9.1不等式专项提升训练(重难点培优)(原卷版+解析)
展开
这是一份人教版七年级数学下册尖子生培优练习 专题9.1不等式专项提升训练(重难点培优)(原卷版+解析),共15页。
专题9.1不等式专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022春•滨海县月考)下列数学表达式中:①﹣3<0.②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x≠2,⑥x+1>3中,不等式有( )A.3个 B.4个 C.5个 D.6个2.(2022秋•洞头区期中)若m>n,则下列不等式中正确的是( )A.m+2<n+2 B.−12m>−12n C.n﹣m>0 D.﹣2m+1<﹣2n+13.(2022秋•苍南县期中)在数轴上表示不等式﹣1≤x<2,其中正确的是( )A. B. C. D.4.(2022春•泌阳县月考)A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,若需要将A,B两种疫苗储藏在一起,则冷库储藏温度要求为( )A.0℃~2℃ B.0℃~8℃ C.2℃~6℃ D.6℃~8℃5.(2022春•如东县期中)不等式0≤x<2的解( )A.为0,1,2 B.为0,1 C.为1,2 D.有无数个6.(2022秋•铜梁区校级月考)已知m、n均为非零有理数,下列结论正确的是( )A.若m≠n,则|m|≠|n| B.若|m|=|n|,则m=n C.若m>n>0,则1m>1n D.若m>n>0,则﹣m<﹣n7.(2022•义乌市开学)已知三个实数a,b,c满足ab>0,a+b<c,a+b+c=0,则下列结论一定成立的是( )A.a<0,b<0,c>0 B.a>0,b>0,c<0 C.a>0,b<0,c>0 D.a>0,b<0,c<08.(2022春•巩义市期末)如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A.D<B<A<C B.B<D<C<A C.B<A<D<C D.B<C<D<A9.(2022春•开福区校级期末)若不等式组x>8x<4m无解,则m的取值范围为( )A.m≤2 B.m<2 C.m≥2 D.m>210.(2022春•罗源县期末)已知a、b、c满足3a+2b﹣4c=6,2a+b﹣3c=1,且a、b、c都为正数.设y=3a+b﹣2c,则y的取值范围为( )A.3<y<24 B.0<y<3 C.0<y<24 D.y<24二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•南关区校级期中)如图,写出下图不等式的解集 .12.(2022春•如东县期中)若a<b,则−a2 −b2.13.(2022春•德化县期中)若x是非正数,则x 0.(填不等号)14.(2022•南京模拟)关于a的不等式的解集在数轴上表示如图所示,则该不等式的解集为 .15.(2022•萧山区开学)由不等式ax>b可以推出x<ba,那么a的取值范围是 .16.(2022春•赤坎区校级期末)若关于x的不等式组x<4x<m的解集是x<4,则P(2﹣m,m+2)在第 象限.17.(2022春•浚县期末)若不等式x>y和(a﹣3)x<(a﹣3)y成立,则a的取值范围是 .18.(2023春•龙岗区校级期中)阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:a+b2≥ab,当且仅当a=b时取到等号.则函数y=2x+3x(x<0)的最大值为 .(提示:可以先求﹣y的最小值)三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•朝天区期末)已知x>y.(1)比较9﹣x与9﹣y的大小,并说明理由;(2)若mx+4<my+4,求m的取值范围.20.(2022秋•拱墅区月考)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x>y,且(a﹣3)x<(a﹣3)y,求a的取值范围.21.(2022春•保定期末)已知4x﹣y=1.(1)用含x的代数式表示y为 ,(2)若y的取值范围如图所示,求x的正整数值.22.(2022春•韩城市期末)已知实数x、y满足3x+4y=1.(1)用含有x的式子表示y;(2)若实数y满足y>1,求x的取值范围.23.(2022春•庆云县期末)已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若x=2y=−1是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围.24.(2022春•南阳期末)【阅读思考】阅读下列材料:已知“x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:∵x﹣y=2,∴x=y+2;又∵x>1,∴y+2>1∴y>﹣1;又∵y<0,∴﹣1<y<0.①同理1<x<2.②由①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.【启发应用】请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 ;【拓展推广】请按照上述方法,完成下列问题:已知x+y=2,且x>1,y>﹣4,试确定x﹣y的取值范围.专题9.1不等式专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022春•滨海县月考)下列数学表达式中:①﹣3<0.②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x≠2,⑥x+1>3中,不等式有( )A.3个 B.4个 C.5个 D.6个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≤,≥,≠,则不等式有:①②⑤⑥,共4个.故选:B.2.(2022秋•洞头区期中)若m>n,则下列不等式中正确的是( )A.m+2<n+2 B.−12m>−12n C.n﹣m>0 D.﹣2m+1<﹣2n+1【分析】根据不等式的性质解答.【解答】解:A、由m>n得到:m+2>n+2,故本选项不符合题意.B、由m>n得到:−12m<−12n,故本选项不符合题意.C、由m>n得到:n﹣m<0,故本选项不符合题意.D、由m>n得到:﹣2m+1<﹣2n+1,故本选项符合题意.故选:D.3.(2022秋•苍南县期中)在数轴上表示不等式﹣1≤x<2,其中正确的是( )A. B. C. D.【分析】不等式﹣1≤x<2在数轴上表示不等式x≥﹣1与x<2两个不等式的公共部分.【解答】解:“≥”实心圆点向右画折线,“<”空心圆圈向左画折线.故在数轴上表示不等式﹣1≤x<2如下:故选:B.4.(2022春•泌阳县月考)A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,若需要将A,B两种疫苗储藏在一起,则冷库储藏温度要求为( )A.0℃~2℃ B.0℃~8℃ C.2℃~6℃ D.6℃~8℃【分析】将A,B两种疫苗储藏在一起,冷库储藏温度正好是A疫苗冷库储藏温度的最低度数和B疫苗冷库储藏温度的最高度数.【解答】解:∵A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,∴A,B两种疫苗储藏在一起,冷库储藏温度要求为2℃~6℃.故选:C.5.(2022春•如东县期中)不等式0≤x<2的解( )A.为0,1,2 B.为0,1 C.为1,2 D.有无数个【分析】根据不等式的解集的定义解答即可.【解答】解:不等式0≤x<2的解有无数个.故选:D.6.(2022秋•铜梁区校级月考)已知m、n均为非零有理数,下列结论正确的是( )A.若m≠n,则|m|≠|n| B.若|m|=|n|,则m=n C.若m>n>0,则1m>1n D.若m>n>0,则﹣m<﹣n【分析】观察所给四个选项中的式子的关系,直接判断比较困难,可考虑应用特殊数法进行计算后再判断;题目中的四个选项中对m、n都有限制条件,可假设出符合条件的m、n的数值,再代入结论中进行验证;如选项A中,由于m≠n,可假设m=1,n=﹣1,再求出m、n的绝对值,根据结果判断它们的大小关系即可,接下来对其他选项进行分析.【解答】解:A、假设m=1,n=﹣1,则m≠n,但|1|=|﹣1|=1,所以选项A错误;B、假设m=1,n=﹣1,则|m|=|n|,但m≠n,所以选项B错误;C、假设m=3,n=2,则1m=13,1n=12,但1m<1n,所以选项C错误;D、由负数的大小比较方法可知选项D正确.故选D.7.(2022•义乌市开学)已知三个实数a,b,c满足ab>0,a+b<c,a+b+c=0,则下列结论一定成立的是( )A.a<0,b<0,c>0 B.a>0,b>0,c<0 C.a>0,b<0,c>0 D.a>0,b<0,c<0【分析】根据ab>0,得到a和b同号,再由a+b<c和a+b+c=0,得到a、b为负,c为正.【解答】解:∵ab>0,∴a和b同号,又∵a+b<c和a+b+c=0,∴a<0,b<0,c>0.故选:A.8.(2022春•巩义市期末)如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A.D<B<A<C B.B<D<C<A C.B<A<D<C D.B<C<D<A【分析】根据不等式的性质,进行计算即可解答.【解答】解:由题意得:D>A①,A+C>B+D②,B+C=A+D③,由③得:C=A+D﹣B④,把④代入②得:A+A+D﹣B>B+D,2A>2B,∴A>B,∴A﹣B>0,由③得:A﹣B=C﹣D,∵D﹣A>0,∴C﹣D>0,∴C>D,∴C>D>A>B,即B<A<D<C,故选:C.9.(2022春•开福区校级期末)若不等式组x>8x<4m无解,则m的取值范围为( )A.m≤2 B.m<2 C.m≥2 D.m>2【分析】根据大大小小无解集得到4m≤8,即可得出答案.【解答】解:根据题意得:4m≤8,∴m≤2.故选:A.10.(2022春•罗源县期末)已知a、b、c满足3a+2b﹣4c=6,2a+b﹣3c=1,且a、b、c都为正数.设y=3a+b﹣2c,则y的取值范围为( )A.3<y<24 B.0<y<3 C.0<y<24 D.y<24【分析】把c当作常数解方程组,再代入y,根据a、b、c都为正数,求出c的取值范围,从而求解.【解答】解:∵3a+2b﹣4c=6,2a+b﹣3c=1,∴a=2c﹣4,b=9﹣c,∴y=3a+b﹣2c=3(2c﹣4)+9﹣c+2c=3c﹣3,∵a、b、c都为正数,∴2c﹣4>0,9﹣c>0,∴2<c<9,∴3<3c﹣3<24,∴3<y<24.故选A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•南关区校级期中)如图,写出下图不等式的解集 x≥﹣2 .【分析】根据用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”写出答案即可.【解答】解:该数轴上所表示的不等式的解集为:x≥﹣2.故答案为:x≥﹣2.12.(2022春•如东县期中)若a<b,则−a2 > −b2.【分析】根据不等式的性质判断即可.【解答】解:∵a<b,∴−a2>−b2.故答案为:>.13.(2022春•德化县期中)若x是非正数,则x ≤ 0.(填不等号)【分析】根据不等关系解决此题.【解答】解:由题意得,x≤0.故答案为:≤.14.(2022•南京模拟)关于a的不等式的解集在数轴上表示如图所示,则该不等式的解集为 a≤3 .【分析】根据数轴写出不等式的解集.【解答】解:∵,∴不等式的解集为a≤3,故答案为a≤3.15.(2022•萧山区开学)由不等式ax>b可以推出x<ba,那么a的取值范围是 a<0 .【分析】根据不等式性质3得到a的范围.【解答】解:∵不等式ax>b的解集为x<ba,∴a<0,即a的取值范围为a<0.故答案为:a<0.16.(2022春•赤坎区校级期末)若关于x的不等式组x<4x<m的解集是x<4,则P(2﹣m,m+2)在第 二 象限.【分析】利用不等式组的解集“同小取小”得到m≥4,进而确定点P的横坐标与纵坐标的范围,从而得出点P所在象限.【解答】解:∵关于x的不等式组x<4x<m的解集是x<4,∴m≥4.∴2﹣m<0,m+2>0,∴P(2﹣m,m+2)在第二象限.故答案为:二.17.(2022春•浚县期末)若不等式x>y和(a﹣3)x<(a﹣3)y成立,则a的取值范围是 a<3 .【分析】根据不等式的性质判断即可.【解答】解:∵x>y,∴当a﹣3<0时,(a﹣3)x<(a﹣3)y,∴a<3.故答案为:a<3.18.(2023春•龙岗区校级期中)阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:a+b2≥ab,当且仅当a=b时取到等号.则函数y=2x+3x(x<0)的最大值为 ﹣26 .(提示:可以先求﹣y的最小值)【分析】根据题意先求﹣y的值,再根据不等式的性质求解即可.【解答】解:∵x<0,则2x<0,3x<0,∴﹣y=﹣(2x+3x)≥22x⋅33=26,∴y≤﹣26,当且仅当2x=3x,即x=62时,函数有最大值为﹣26,故答案为:﹣26.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•朝天区期末)已知x>y.(1)比较9﹣x与9﹣y的大小,并说明理由;(2)若mx+4<my+4,求m的取值范围.【分析】(1)根据不等式的性质3和性质1进行变形即可;(2)不等号的方向改变了,根据不等式的性质3可知,乘以的数为负数,即m<0.【解答】解:(1)9﹣x<9﹣y,理由如下:∵x>y,∴﹣x<﹣y(不等式的性质3),∴9﹣x<9﹣y(不等式的性质1);(2)由x>y可得mx+4<my+4可知,m<0.20.(2022秋•拱墅区月考)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x>y,且(a﹣3)x<(a﹣3)y,求a的取值范围.【分析】(1)先求出(﹣3x+5)﹣(﹣3y+5)的值,再根据x>y判断即可;(2)根据不等式的性质3得出a﹣3<0,再求出答案即可.【解答】解:(1)﹣3x+5<﹣3y+5,理由是:∵x>y,∴y﹣x<0,∴(﹣3x+5)﹣(﹣3y+5)=﹣3x+5+3y﹣5=3y﹣3x=3(y﹣x)<0,∴﹣3x+5<﹣3y+5;(2)∵x>y,(a﹣3)x<(a﹣3)y,∴a﹣3<0,∴a<3,即a的取值范围是a<3.21.(2022春•保定期末)已知4x﹣y=1.(1)用含x的代数式表示y为 y=4x﹣1 ,(2)若y的取值范围如图所示,求x的正整数值.【分析】(1)移项即可得出答案;(2)根据y≤7得出4x﹣1≤7,解之即可.【解答】解:(1)4x﹣y=1则y=4x﹣1,故答案为:y=4x﹣1;(2)由题意可得,4x﹣1≤7,4x≤8,x≤2,故x的正整数值为1、2.22.(2022春•韩城市期末)已知实数x、y满足3x+4y=1.(1)用含有x的式子表示y;(2)若实数y满足y>1,求x的取值范围.【分析】(1)解关于y的方程即可;(2)利用y>1得到关于x的不等式−34x+14>1,然后解不等式即可.【解答】解:(1)3x+4y=1,4y=﹣3x+1,y=−34x+14;(2)根据题意得−34x+14>1,解得x<﹣1.23.(2022春•庆云县期末)已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若x=2y=−1是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围.【分析】(1)把方程的解代入二元一次方程,得关于a的一元一次方程,求解即可;(2)把x=2代入二元一次方程,根据y>0得关于a的不等式,求解即可.【解答】解:(1)把x=2y=−1代入二元一次方程ax+2y=a﹣1,得2a﹣2=a﹣1.∴a=1.(2)把x=2代入方程ax+2y=a﹣1得2a+2y=a﹣1,∴y=−a−12.∵y>0,∴−a−12>0.解得a<﹣1.24.(2022春•南阳期末)【阅读思考】阅读下列材料:已知“x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:∵x﹣y=2,∴x=y+2;又∵x>1,∴y+2>1∴y>﹣1;又∵y<0,∴﹣1<y<0.①同理1<x<2.②由①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.【启发应用】请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 1<x+y<5 ;【拓展推广】请按照上述方法,完成下列问题:已知x+y=2,且x>1,y>﹣4,试确定x﹣y的取值范围.【分析】【启发应用】先用y表示x,再根据x的大小确定不等式,求解即可;【拓展推广】先用y表示x,再根据x的大小确定不等式,求解即可.【解答】解:【启发应用】1<x+y<5.理由如下:∵x﹣y=3,∴x=y+3,∵x>2,∴y+3>2,∴y>﹣1,又∵y<1,∴﹣1<y<1.①同理可得:2<x<4.②由①+②得:﹣1+2<x+y<1+4.∴x+y的取值范围是:1<x+y<5.故答案为:1<x+y<5.【拓展推广】∵x+y=2,∴x=2﹣y,又∵x>1,∴2﹣y>1,∴y<1,又∵y>﹣4,∴﹣4<y<1,∴﹣1<﹣y<4.①同理得:1<x<6.②由①+②得:0<x﹣y<10,∴x﹣y的取值范围是:0<x﹣y<10.
专题9.1不等式专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022春•滨海县月考)下列数学表达式中:①﹣3<0.②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x≠2,⑥x+1>3中,不等式有( )A.3个 B.4个 C.5个 D.6个2.(2022秋•洞头区期中)若m>n,则下列不等式中正确的是( )A.m+2<n+2 B.−12m>−12n C.n﹣m>0 D.﹣2m+1<﹣2n+13.(2022秋•苍南县期中)在数轴上表示不等式﹣1≤x<2,其中正确的是( )A. B. C. D.4.(2022春•泌阳县月考)A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,若需要将A,B两种疫苗储藏在一起,则冷库储藏温度要求为( )A.0℃~2℃ B.0℃~8℃ C.2℃~6℃ D.6℃~8℃5.(2022春•如东县期中)不等式0≤x<2的解( )A.为0,1,2 B.为0,1 C.为1,2 D.有无数个6.(2022秋•铜梁区校级月考)已知m、n均为非零有理数,下列结论正确的是( )A.若m≠n,则|m|≠|n| B.若|m|=|n|,则m=n C.若m>n>0,则1m>1n D.若m>n>0,则﹣m<﹣n7.(2022•义乌市开学)已知三个实数a,b,c满足ab>0,a+b<c,a+b+c=0,则下列结论一定成立的是( )A.a<0,b<0,c>0 B.a>0,b>0,c<0 C.a>0,b<0,c>0 D.a>0,b<0,c<08.(2022春•巩义市期末)如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A.D<B<A<C B.B<D<C<A C.B<A<D<C D.B<C<D<A9.(2022春•开福区校级期末)若不等式组x>8x<4m无解,则m的取值范围为( )A.m≤2 B.m<2 C.m≥2 D.m>210.(2022春•罗源县期末)已知a、b、c满足3a+2b﹣4c=6,2a+b﹣3c=1,且a、b、c都为正数.设y=3a+b﹣2c,则y的取值范围为( )A.3<y<24 B.0<y<3 C.0<y<24 D.y<24二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•南关区校级期中)如图,写出下图不等式的解集 .12.(2022春•如东县期中)若a<b,则−a2 −b2.13.(2022春•德化县期中)若x是非正数,则x 0.(填不等号)14.(2022•南京模拟)关于a的不等式的解集在数轴上表示如图所示,则该不等式的解集为 .15.(2022•萧山区开学)由不等式ax>b可以推出x<ba,那么a的取值范围是 .16.(2022春•赤坎区校级期末)若关于x的不等式组x<4x<m的解集是x<4,则P(2﹣m,m+2)在第 象限.17.(2022春•浚县期末)若不等式x>y和(a﹣3)x<(a﹣3)y成立,则a的取值范围是 .18.(2023春•龙岗区校级期中)阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:a+b2≥ab,当且仅当a=b时取到等号.则函数y=2x+3x(x<0)的最大值为 .(提示:可以先求﹣y的最小值)三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•朝天区期末)已知x>y.(1)比较9﹣x与9﹣y的大小,并说明理由;(2)若mx+4<my+4,求m的取值范围.20.(2022秋•拱墅区月考)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x>y,且(a﹣3)x<(a﹣3)y,求a的取值范围.21.(2022春•保定期末)已知4x﹣y=1.(1)用含x的代数式表示y为 ,(2)若y的取值范围如图所示,求x的正整数值.22.(2022春•韩城市期末)已知实数x、y满足3x+4y=1.(1)用含有x的式子表示y;(2)若实数y满足y>1,求x的取值范围.23.(2022春•庆云县期末)已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若x=2y=−1是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围.24.(2022春•南阳期末)【阅读思考】阅读下列材料:已知“x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:∵x﹣y=2,∴x=y+2;又∵x>1,∴y+2>1∴y>﹣1;又∵y<0,∴﹣1<y<0.①同理1<x<2.②由①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.【启发应用】请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 ;【拓展推广】请按照上述方法,完成下列问题:已知x+y=2,且x>1,y>﹣4,试确定x﹣y的取值范围.专题9.1不等式专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022春•滨海县月考)下列数学表达式中:①﹣3<0.②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x≠2,⑥x+1>3中,不等式有( )A.3个 B.4个 C.5个 D.6个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≤,≥,≠,则不等式有:①②⑤⑥,共4个.故选:B.2.(2022秋•洞头区期中)若m>n,则下列不等式中正确的是( )A.m+2<n+2 B.−12m>−12n C.n﹣m>0 D.﹣2m+1<﹣2n+1【分析】根据不等式的性质解答.【解答】解:A、由m>n得到:m+2>n+2,故本选项不符合题意.B、由m>n得到:−12m<−12n,故本选项不符合题意.C、由m>n得到:n﹣m<0,故本选项不符合题意.D、由m>n得到:﹣2m+1<﹣2n+1,故本选项符合题意.故选:D.3.(2022秋•苍南县期中)在数轴上表示不等式﹣1≤x<2,其中正确的是( )A. B. C. D.【分析】不等式﹣1≤x<2在数轴上表示不等式x≥﹣1与x<2两个不等式的公共部分.【解答】解:“≥”实心圆点向右画折线,“<”空心圆圈向左画折线.故在数轴上表示不等式﹣1≤x<2如下:故选:B.4.(2022春•泌阳县月考)A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,若需要将A,B两种疫苗储藏在一起,则冷库储藏温度要求为( )A.0℃~2℃ B.0℃~8℃ C.2℃~6℃ D.6℃~8℃【分析】将A,B两种疫苗储藏在一起,冷库储藏温度正好是A疫苗冷库储藏温度的最低度数和B疫苗冷库储藏温度的最高度数.【解答】解:∵A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,∴A,B两种疫苗储藏在一起,冷库储藏温度要求为2℃~6℃.故选:C.5.(2022春•如东县期中)不等式0≤x<2的解( )A.为0,1,2 B.为0,1 C.为1,2 D.有无数个【分析】根据不等式的解集的定义解答即可.【解答】解:不等式0≤x<2的解有无数个.故选:D.6.(2022秋•铜梁区校级月考)已知m、n均为非零有理数,下列结论正确的是( )A.若m≠n,则|m|≠|n| B.若|m|=|n|,则m=n C.若m>n>0,则1m>1n D.若m>n>0,则﹣m<﹣n【分析】观察所给四个选项中的式子的关系,直接判断比较困难,可考虑应用特殊数法进行计算后再判断;题目中的四个选项中对m、n都有限制条件,可假设出符合条件的m、n的数值,再代入结论中进行验证;如选项A中,由于m≠n,可假设m=1,n=﹣1,再求出m、n的绝对值,根据结果判断它们的大小关系即可,接下来对其他选项进行分析.【解答】解:A、假设m=1,n=﹣1,则m≠n,但|1|=|﹣1|=1,所以选项A错误;B、假设m=1,n=﹣1,则|m|=|n|,但m≠n,所以选项B错误;C、假设m=3,n=2,则1m=13,1n=12,但1m<1n,所以选项C错误;D、由负数的大小比较方法可知选项D正确.故选D.7.(2022•义乌市开学)已知三个实数a,b,c满足ab>0,a+b<c,a+b+c=0,则下列结论一定成立的是( )A.a<0,b<0,c>0 B.a>0,b>0,c<0 C.a>0,b<0,c>0 D.a>0,b<0,c<0【分析】根据ab>0,得到a和b同号,再由a+b<c和a+b+c=0,得到a、b为负,c为正.【解答】解:∵ab>0,∴a和b同号,又∵a+b<c和a+b+c=0,∴a<0,b<0,c>0.故选:A.8.(2022春•巩义市期末)如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A.D<B<A<C B.B<D<C<A C.B<A<D<C D.B<C<D<A【分析】根据不等式的性质,进行计算即可解答.【解答】解:由题意得:D>A①,A+C>B+D②,B+C=A+D③,由③得:C=A+D﹣B④,把④代入②得:A+A+D﹣B>B+D,2A>2B,∴A>B,∴A﹣B>0,由③得:A﹣B=C﹣D,∵D﹣A>0,∴C﹣D>0,∴C>D,∴C>D>A>B,即B<A<D<C,故选:C.9.(2022春•开福区校级期末)若不等式组x>8x<4m无解,则m的取值范围为( )A.m≤2 B.m<2 C.m≥2 D.m>2【分析】根据大大小小无解集得到4m≤8,即可得出答案.【解答】解:根据题意得:4m≤8,∴m≤2.故选:A.10.(2022春•罗源县期末)已知a、b、c满足3a+2b﹣4c=6,2a+b﹣3c=1,且a、b、c都为正数.设y=3a+b﹣2c,则y的取值范围为( )A.3<y<24 B.0<y<3 C.0<y<24 D.y<24【分析】把c当作常数解方程组,再代入y,根据a、b、c都为正数,求出c的取值范围,从而求解.【解答】解:∵3a+2b﹣4c=6,2a+b﹣3c=1,∴a=2c﹣4,b=9﹣c,∴y=3a+b﹣2c=3(2c﹣4)+9﹣c+2c=3c﹣3,∵a、b、c都为正数,∴2c﹣4>0,9﹣c>0,∴2<c<9,∴3<3c﹣3<24,∴3<y<24.故选A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•南关区校级期中)如图,写出下图不等式的解集 x≥﹣2 .【分析】根据用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”写出答案即可.【解答】解:该数轴上所表示的不等式的解集为:x≥﹣2.故答案为:x≥﹣2.12.(2022春•如东县期中)若a<b,则−a2 > −b2.【分析】根据不等式的性质判断即可.【解答】解:∵a<b,∴−a2>−b2.故答案为:>.13.(2022春•德化县期中)若x是非正数,则x ≤ 0.(填不等号)【分析】根据不等关系解决此题.【解答】解:由题意得,x≤0.故答案为:≤.14.(2022•南京模拟)关于a的不等式的解集在数轴上表示如图所示,则该不等式的解集为 a≤3 .【分析】根据数轴写出不等式的解集.【解答】解:∵,∴不等式的解集为a≤3,故答案为a≤3.15.(2022•萧山区开学)由不等式ax>b可以推出x<ba,那么a的取值范围是 a<0 .【分析】根据不等式性质3得到a的范围.【解答】解:∵不等式ax>b的解集为x<ba,∴a<0,即a的取值范围为a<0.故答案为:a<0.16.(2022春•赤坎区校级期末)若关于x的不等式组x<4x<m的解集是x<4,则P(2﹣m,m+2)在第 二 象限.【分析】利用不等式组的解集“同小取小”得到m≥4,进而确定点P的横坐标与纵坐标的范围,从而得出点P所在象限.【解答】解:∵关于x的不等式组x<4x<m的解集是x<4,∴m≥4.∴2﹣m<0,m+2>0,∴P(2﹣m,m+2)在第二象限.故答案为:二.17.(2022春•浚县期末)若不等式x>y和(a﹣3)x<(a﹣3)y成立,则a的取值范围是 a<3 .【分析】根据不等式的性质判断即可.【解答】解:∵x>y,∴当a﹣3<0时,(a﹣3)x<(a﹣3)y,∴a<3.故答案为:a<3.18.(2023春•龙岗区校级期中)阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:a+b2≥ab,当且仅当a=b时取到等号.则函数y=2x+3x(x<0)的最大值为 ﹣26 .(提示:可以先求﹣y的最小值)【分析】根据题意先求﹣y的值,再根据不等式的性质求解即可.【解答】解:∵x<0,则2x<0,3x<0,∴﹣y=﹣(2x+3x)≥22x⋅33=26,∴y≤﹣26,当且仅当2x=3x,即x=62时,函数有最大值为﹣26,故答案为:﹣26.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•朝天区期末)已知x>y.(1)比较9﹣x与9﹣y的大小,并说明理由;(2)若mx+4<my+4,求m的取值范围.【分析】(1)根据不等式的性质3和性质1进行变形即可;(2)不等号的方向改变了,根据不等式的性质3可知,乘以的数为负数,即m<0.【解答】解:(1)9﹣x<9﹣y,理由如下:∵x>y,∴﹣x<﹣y(不等式的性质3),∴9﹣x<9﹣y(不等式的性质1);(2)由x>y可得mx+4<my+4可知,m<0.20.(2022秋•拱墅区月考)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x>y,且(a﹣3)x<(a﹣3)y,求a的取值范围.【分析】(1)先求出(﹣3x+5)﹣(﹣3y+5)的值,再根据x>y判断即可;(2)根据不等式的性质3得出a﹣3<0,再求出答案即可.【解答】解:(1)﹣3x+5<﹣3y+5,理由是:∵x>y,∴y﹣x<0,∴(﹣3x+5)﹣(﹣3y+5)=﹣3x+5+3y﹣5=3y﹣3x=3(y﹣x)<0,∴﹣3x+5<﹣3y+5;(2)∵x>y,(a﹣3)x<(a﹣3)y,∴a﹣3<0,∴a<3,即a的取值范围是a<3.21.(2022春•保定期末)已知4x﹣y=1.(1)用含x的代数式表示y为 y=4x﹣1 ,(2)若y的取值范围如图所示,求x的正整数值.【分析】(1)移项即可得出答案;(2)根据y≤7得出4x﹣1≤7,解之即可.【解答】解:(1)4x﹣y=1则y=4x﹣1,故答案为:y=4x﹣1;(2)由题意可得,4x﹣1≤7,4x≤8,x≤2,故x的正整数值为1、2.22.(2022春•韩城市期末)已知实数x、y满足3x+4y=1.(1)用含有x的式子表示y;(2)若实数y满足y>1,求x的取值范围.【分析】(1)解关于y的方程即可;(2)利用y>1得到关于x的不等式−34x+14>1,然后解不等式即可.【解答】解:(1)3x+4y=1,4y=﹣3x+1,y=−34x+14;(2)根据题意得−34x+14>1,解得x<﹣1.23.(2022春•庆云县期末)已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若x=2y=−1是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围.【分析】(1)把方程的解代入二元一次方程,得关于a的一元一次方程,求解即可;(2)把x=2代入二元一次方程,根据y>0得关于a的不等式,求解即可.【解答】解:(1)把x=2y=−1代入二元一次方程ax+2y=a﹣1,得2a﹣2=a﹣1.∴a=1.(2)把x=2代入方程ax+2y=a﹣1得2a+2y=a﹣1,∴y=−a−12.∵y>0,∴−a−12>0.解得a<﹣1.24.(2022春•南阳期末)【阅读思考】阅读下列材料:已知“x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:∵x﹣y=2,∴x=y+2;又∵x>1,∴y+2>1∴y>﹣1;又∵y<0,∴﹣1<y<0.①同理1<x<2.②由①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.【启发应用】请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 1<x+y<5 ;【拓展推广】请按照上述方法,完成下列问题:已知x+y=2,且x>1,y>﹣4,试确定x﹣y的取值范围.【分析】【启发应用】先用y表示x,再根据x的大小确定不等式,求解即可;【拓展推广】先用y表示x,再根据x的大小确定不等式,求解即可.【解答】解:【启发应用】1<x+y<5.理由如下:∵x﹣y=3,∴x=y+3,∵x>2,∴y+3>2,∴y>﹣1,又∵y<1,∴﹣1<y<1.①同理可得:2<x<4.②由①+②得:﹣1+2<x+y<1+4.∴x+y的取值范围是:1<x+y<5.故答案为:1<x+y<5.【拓展推广】∵x+y=2,∴x=2﹣y,又∵x>1,∴2﹣y>1,∴y<1,又∵y>﹣4,∴﹣4<y<1,∴﹣1<﹣y<4.①同理得:1<x<6.②由①+②得:0<x﹣y<10,∴x﹣y的取值范围是:0<x﹣y<10.
相关资料
更多