搜索
    上传资料 赚现金
    第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用(原卷版).docx
    • 解析
      第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用(解析版).docx
    第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练01
    第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练02
    第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练03
    第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练01
    第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练02
    第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练03
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练

    展开
    这是一份第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练,文件包含第25讲正余弦型函数的图像性质及三角函数模型的简单应用原卷版docx、第25讲正余弦型函数的图像性质及三角函数模型的简单应用解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    基础知识
    1.y=Asin(ωx+φ)的有关概念
    2.用五点法画y=Asin(ωx+φ)在一个周期内的简图时,要找五个特征点,如下表所示:
    3.函数y=sin x的图像经变换得到y=Asin(ωx+φ)的图像的步骤
    常用结论
    1.“五点法”作图中,相邻两点的横向距离均为T4.
    2.在正弦函数图像、余弦函数图像中,相邻的两个对称中心以及相邻的两条对称轴之间的距离均为半个周期.
    3.若直线x=a为正(余)弦曲线的对称轴,则正(余)弦函数一定在x=a处取得最值.
    4.若函数y=Asin(ωx+φ)+k(A>0,ω>0)的最大值为M,最小值为m,则A=M-m2,k=M+m2.
    分类探究
    探究点一 正(余)弦型函数的图像变换
    例1 (1)将函数f(x)=2sin(x+π6)的图像上各点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移π3个单位,得到函数y=g(x)的图像,则( )
    A.g(x)=2sin 12x
    B.g(x)=2sin(12x+π3)
    C.g(x)=2sin(2x-π6)
    D.g(x)=2sin(2x+5π6)
    (2)要得到函数y=cs(2x-π6)的图像,可把函数y=sin(2x+π6)的图像( )
    A.向右平移π6个单位B.向右平移π12个单位
    C.向左平移π6个单位D.向左平移π12个单位
    [总结反思] 由y=sin x的图像变换到y=Asin(ωx+φ)的图像,两种变换中平移的量的区别:先平移再伸缩,平移的量是|φ|个单位;而先伸缩再平移,平移的量是|φ|ω(ω>0)个单位.特别提醒:平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx加减多少值.
    变式题 (1)(多选题)要得到函数y=sin(2x-π12)的图像,只需将函数y=sin x的图像经过下列两次变换,则下列变换正确的是( )
    A.先将函数y=sin x的图像上各点的横坐标缩短到原来的12(纵坐标不变),再将所得图像向右平移π24个单位
    B.先将函数y=sin x的图像上各点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向右平移π24个单位
    C.先将函数y=sin x的图像向右平移π12个单位,再将所得图像上各点的横坐标伸长到原来的2倍(纵坐标不变)
    D.先将函数y=sin x的图像向右平移π12个单位,再将所得图像上各点的横坐标缩短到原来的12(纵坐标不变)
    (2)将函数y=sin(6x+π4)的图像上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移π8个单位,得到的图像的一个对称中心是( )
    A.(π2,0)B.(π4,0)
    C.π9,0D.(π16,0)
    (3)将函数f(x)=sin(2x-π3)的图像向左平移a(a>0)个单位,得到函数g(x)=cs 2x的图像,则a的最小值为( )
    A.π3B.5π12
    C.2π3D.π12
    探究点二 正(余)弦型函数的图像与解析式
    例2 (1)设函数f(x)=cs (ωx+π6)在[-π,π]的图像大致如图4-25-2所示,则f(x)的最小正周期为( )
    图4-25-2
    A.10π9B.7π6C.4π3D.3π2
    (2)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的部分图像如图4-25-3所示,则函数f(x)的解析式为 .
    图4-25-3
    [总结反思] 根据三角函数图像求解析式,重在对A,ω,φ的理解,主要从以下三个方面考虑:
    (1)根据最大值或最小值求出A的值.
    (2)根据周期求出ω的值.
    (3)求φ的常用方法如下:①代入法:把图像上的一个已知点的坐标代入(此时要注意该点的位置)或把图像的最高点或最低点的坐标代入.②五点法:确定φ的值时,往往以寻找“五点法”中的特殊点作为突破口.
    变式题 (1)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π).若函数y=|f(x)|的图像如图4-25-4所示,则( )
    图4-25-4
    A.f(x)=2sin(4x+π3)
    B.f(x)=2sin(4x-π3)
    C.f(x)=2sin(43x-8π9)
    D.f(x)=2sin(43x+8π9)
    (2)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π2)满足f(x+π2)=-f(x),若把函数f(x)的图像向左平移π3个单位后得到的图像对应的函数为偶函数,则函数f(x)的解析式为( )
    A.f(x)=sin(x+π6)
    B.f(x)=sin(2x-π3)
    C.f(x)=sin(4x+π3)
    D.f(x)=sin(2x-π6)
    探究点三 正(余)弦型函数图像与性质的应用
    例3 (1)已知函数f(x)=sin ωx+3cs ωx(ω>0),x1,x2为函数f(x)的两个极值点,若|x1-x2|的最小值为π2,则( )
    A.f(x)在[-5π12,π12]上单调递减
    B.f(x)在[-5π12,π12]上单调递增
    C.f(x)在[-2π3,π3]上单调递减
    D.f(x)在[-2π3,π3]上单调递增
    (2)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π),若f(π8)=2,f(π2)=0,且f(x)在(0,π)上是单调的,则下列说法正确的是( )
    A.ω=12
    B.f(-π8)=6+22
    C.函数f(x)在[-π,-π2]上单调递减
    D.函数f(x)的图像关于点(5π4,0)对称
    [总结反思] 三角函数图像与性质综合问题的求解思路:
    (1)将函数整理成y=Asin(ωx+φ)+B(ω>0)或y=Acs(ωx+φ)+B(ω>0)的形式;
    (2)把ωx+φ看成一个整体;
    (3)借助正弦函数y=sin x或y=cs x的图像与性质(如定义域、值域、最值、周期性、对称性、单调性等)解决相关问题.
    变式题 已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<π2)的部分图像如图4-25-5所示.
    (1)求函数f(x)的解析式;
    (2)求函数g(x)=f(x-π12)-f(x+π12)在[π4,13π24]上的取值范围.
    图4-25-5
    探究点四 三角函数模型的简单应用
    例4 如图4-25-6,某公园摩天轮的半径为40 m,圆心O距地面的高度为50 m,摩天轮逆时针匀速转动,每3 min转一圈,摩天轮上的点P的起始位置在最低点处.
    (1)已知在时刻t(min)时P距离地面的高度f(t)=Asin(ωt+φ)+h(ω>0,|φ|<π),求当t=2006 min时,P距离地面的高度;
    (2)当距离地面的高度在(50+203)m以上时,可以看到公园的全貌,求转一圈的过程中有多少时间可以看到公园的全貌?
    图4-25-6
    [总结反思] 三角函数模型的实际应用问题的类型及解题关键:
    (1)已知函数解析式(模型),利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及函数的对应关系.(2)函数解析式未知时,需把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是利用三角函数解析式中的相关参数表示实际问题中的有关量,如周期、振幅、初相等,然后建立模型.
    变式题 桂花是安徽合肥的市花,是城市形象的重要标志,每年农历八月,安徽合肥的桂花遍地开放,它的最适生长气温是15~30 ℃.若安徽合肥某地农历八月的一天从4~16时的温度变化近似满足函数f(x)=Asin(π8x-5π4)+B(A>0),当x∈[4,16]时,最高温度为30 ℃,最低温度为10 ℃.
    (1)求函数f(x)的解析式;
    (2)求桂花在这天的4~16时内最适合生长的时长.
    同步作业
    1.为了得到函数y=cs(x-13)的图像,只需将余弦函数y=cs x的图像( )
    A.向左平移π3个单位
    B.向右平移π3个单位
    C.向左平移13个单位
    D.向右平移13个单位
    2.已知函数f(x)=cs 2x+sin x,则下列说法错误的是( )
    A.f(x)的图像的一条对称轴为直线x=π2
    B.f(π6)=1
    C.f(x)的图像的一个对称中心为点(π2,0)
    D.f(x)的最大值为98
    3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图像如图K25-1所示,则f(π2)等于( )
    图K25-1
    A.322 B.-322
    C.-32 D.32
    4.已知曲线C:y=cs(2x+φ)(|φ|<π2)的一条对称轴方程为x=π3,将曲线C向左平移θ(θ>0)个单位,得到曲线E,曲线E的一个对称中心的坐标为(π4,0),则θ的最小值是( )
    A.π6B.π4
    C.π3D.π12
    5.(多选题)把函数f(x)=sin(2x-π3)的图像向左平移φ(0<φ<π)个单位可以得到函数g(x)的图像,若g(x)的图像关于y轴对称,则φ的值可能为( )
    A.5π12B.7π12
    C.5π6D.11π12
    6.已知某人的血压满足函数关系式f(t)=24sin 160πt+110,其中f(t)为血压(mmHg),t为时间(min),则此人每分钟心跳次数为 .
    7.将函数y=sin x2的图像向左平移π个单位后得到的图像的对称中心是 .
    8.函数f(x)=sin(2x+φ)的图像向左平移π6个单位得到函数g(x)的图像,若函数g(x)是偶函数,则tan(2φ+π3)=( )
    A.-3B.3C.-33D.33
    9.函数f(x)=cs(πx+φ)(0<φ<π2)的部分图像如图K25-2所示,若方程f(x)=a在(0,x0)上有两个不同的实数解x1,x2,则x1f(x1)+x2f(x2)的取值范围是( )
    图K25-2
    A.{0}
    B.(-1,22)
    C.(-32,324)
    D.(-43,324)
    10.将函数g(x)=2cs2(x+π4)-1的图像向右平移π4个单位,再将所得图像上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数f(x)的图像,则下列说法正确的是( )
    A.函数f(x)的周期为π
    B.当x∈R时,函数f(x)为奇函数
    C.直线x=π是函数f(x)的图像的一条对称轴
    D.函数f(x)在区间[2π3,5π4]上的最小值为-32
    11.(多选题)声音是由物体振动产生的,其中包含着正弦函数.纯音的数学模型是函数y=Asin ωt,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数f(x)=sin x+12sin 2x,则下列结论正确的是( )
    A.f(x)的周期为2π
    B.f(x)在[0,2π]上有3个零点
    C.f(x)的最大值为334
    D.f(x)在[0,π2]上单调递增
    12.(多选题)如图K25-3,已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤π2)的图像与x轴的两个交点为P,B,与y轴交于点C,BC=2BD,∠OCB=π3,OP=2,PD=2213,则下列说法正确的有( )
    图K25-3
    A.f(x)的周期为12
    B.φ=-π6
    C.f(x)的最大值为163
    D.f(x)在区间(14,17)上单调递增
    13.将函数f(x)=2-4sin2x的图像向左平移5π6个单位后得到函数g(x)的图像,若函数g(x)在区间[0,a2]和[3a,7π6]上均单调递增,则实数a的取值范围是 .
    14.若将函数y=6sin x+6cs x的图像向右平移θ(0<θ<π2)个单位得到函数y=3sin x+acs x(a<0)的图像,则tan θ的值为 .
    15.已知函数f(x)=2cs ωxsin(ωx-π3)+32, ,求f(x)在[-π6,π6]上的取值范围.从①若|f(x1)-f(x2)|=2,|x1-x2|的最小值为π2;②f(x)的图像的两条相邻对称轴之间的距离为π2;③若f(x1)=f(x2)=0,|x1-x2|的最小值为π2这三个条件中任选一个,补充在上面问题中并作答.
    16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)在一个周期内的图像如图K25-4所示,已知f(π6)=0,f(5π12)=3.
    (1)求函数f(x)的解析式;
    (2)将函数y=f(x)的图像向左平移π4个单位,再将得到的图像上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=g(x)的图像,求g(x)在[-π3,2π3]上的最小值.
    图K25-4
    17.水车是一种利用水流动力进行灌溉的工具,是人类一项古老的发明,也是人类利用自然和改造自然的象征.如图K25-5是一个水车的示意图,已知水车逆时针匀速旋转一圈的时间是80秒,半径为3米,水车中心(即圆心)距水面1.5米.若以水面与水车的交线为x轴,水车所在平面内,过圆心且与水面垂直的直线为y轴,x轴与y轴的交点为原点O,建立平面直角坐标系,水车的一个水斗从出水面点A处开始计时,经过t秒后转到P点的位置,则点P到水面的距离h(米)与时间t(秒)的函数关系式为( )
    图K25-5
    A.h=3sin(π40t-π6)+1.5
    B.h=1.5cs(π40t+π6)+3
    C.h=3cs(π40t-π3)+1.5
    D.h=1.5sin(π40t+π3)+3
    18.函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<π2),且y=f(x)的最大值为2,其图像的相邻两条对称轴间的距离为2,并过点(1,2),则φ= ,f(1)+f(2)+…+f(2021)= .
    振幅
    相位
    初相
    周期
    频率
    y=Asin(ωx+φ)
    (A>0,ω>0)
    A


    T=

    f=1T=

    x





    ωx+φ





    y=Asin(ωx+φ)
    0
    A
    0
    -A
    0
    相关试卷

    第39讲 函数与方程--2024年高考一轮复习知识清单与题型专练: 这是一份第39讲 函数与方程--2024年高考一轮复习知识清单与题型专练,文件包含第13讲函数与方程原卷版docx、第13讲函数与方程解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    第32讲 数列的综合问题--2024年高考一轮复习知识清单与题型专练: 这是一份第32讲 数列的综合问题--2024年高考一轮复习知识清单与题型专练,文件包含第32讲数列的综合问题原卷版docx、第32讲数列的综合问题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    第31讲 数列求和--2024年高考一轮复习知识清单与题型专练: 这是一份第31讲 数列求和--2024年高考一轮复习知识清单与题型专练,文件包含第31讲数列求和原卷版docx、第31讲数列求和解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第25讲 正(余)弦型函数的图像、性质及三角函数模型的简单应用--2024年高考一轮复习知识清单与题型专练
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map