终身会员
搜索
    上传资料 赚现金
    2023-2024学年山东省潍坊市诸城实验中学九年级(上)第一次月考数学试卷(含解析)
    立即下载
    加入资料篮
    2023-2024学年山东省潍坊市诸城实验中学九年级(上)第一次月考数学试卷(含解析)01
    2023-2024学年山东省潍坊市诸城实验中学九年级(上)第一次月考数学试卷(含解析)02
    2023-2024学年山东省潍坊市诸城实验中学九年级(上)第一次月考数学试卷(含解析)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年山东省潍坊市诸城实验中学九年级(上)第一次月考数学试卷(含解析)

    展开
    这是一份2023-2024学年山东省潍坊市诸城实验中学九年级(上)第一次月考数学试卷(含解析),共19页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。

    1.如图是冬奥会首钢滑雪大跳台赛道的剖面图,剖面图的一部分可抽象为线段AB.已知坡长AB为m米,坡角∠ABH为α,则坡AB的铅垂高度AH为( )
    A. msinα米B. msinα米C. mcsα米D. mtanα米
    2.如图,在半圆ACB中,AB=6,将半圆ACB沿弦BC所在的直线折叠,若BC恰好过圆心O,则BC的长是( )
    A. 3 3
    B. π
    C. 2π
    D. 4 π
    3.如图,AB,CD是⊙O的两条直径,点E是劣弧BC的中点,连接BC,DE.若∠ABC=32°,则∠CDE的度数为( )
    A. 34°
    B. 29°
    C. 32°
    D. 24°
    4.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设直角三角形中( )
    A. 两锐角都大于45°B. 有一个锐角小于45°
    C. 有一个锐角大于45°D. 两锐角都小于45°
    5.如图,四边形ABCD内接于⊙O,若∠C=130°,则∠BOD的度数为( )
    A. 50°
    B. 100°
    C. 130°
    D. 150°
    6.如图,⊙O是△ABC的外接圆,且AB是⊙O的直径,点D在⊙O上,连接OD、BD,且BD=BC,若∠BOD=50°,则∠ABC的度数为( )
    A. 65°
    B. 50°
    C. 30°
    D. 25°
    7.如图,在△ABC中,∠ABC=60°,AB=8,BC=4 3,点D为边AC上一点,点F在BC的延长线上,BC=2CF.若四边形DCFE是平行四边形,连接AE,BE,则图中阴影部分的面积为( )
    A. 24B. 12C. 8D. 6
    8.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为平面直角坐标系内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为( )
    A. 2+1B. 2+12C. 2 2+1D. 2 2−12
    二、多选题:本题共3小题,共15分。在每小题给出的选项中,有多项符合题目要求。
    9.下列语句中,错误的有( )
    A. 相等的圆心角所对的弧相等
    B. 平分弦的直径垂直于弦
    C. 长度相等的两条弧是等弧
    D. 圆是轴对称图形,任何一条直径都是对称轴
    10.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论正确的是( )
    A. tanB=ACBCB. tanB=ADBDC. tanB=CDADD. tanB=ABAC
    11.如图,已知锐角∠AOB,按如下步骤作图:(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;③连接OM,MN,ND.根据以上作图过程及所作图形,下列结论中正确的是( )
    A. ∠COM=∠COD
    B. 若OM=MN,则∠AOB=20°
    C. MN/​/CD
    D. ∠COD=3∠MND
    三、填空题:本题共5小题,每小题5分,共25分。
    12.数学课外兴趣小组的同学们要测量被池塘隔开的两棵树A,B的距离,他们设计了如图的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到F,C为AE上一点,其中4位同学分别测得四组数据:其中能根据所测数据求出A,B两树距离的有______.
    A.AC,∠ACB
    B.EF,DE,∠F
    C.CD,∠ACB,∠ADB
    D.∠F,∠ADB,FB
    13.在△ABC中,若|sinA−12|+( 22−csB)2=0,则∠C的度数是______.
    14.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是______.
    15.如图,一下水管道横截面为圆形,直径为260cm,下雨前水面宽为100cm,一场大雨过后,水面宽为240cm,则水位上升______cm.
    16.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 .
    四、解答题:本题共6小题,共78分。解答应写出文字说明,证明过程或演算步骤。
    17.(本小题16分)
    计算:
    (1)tan60°cs30°−3sin245°;
    (2)cs60°−2sin245°+3tan230°+sin30°.
    18.(本小题12分)
    如图,在△ABC中,AB=6,∠A=45°,∠B=75°,求AB边上的高.
    19.(本小题12分)
    如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于点E,BD交CE于点F.
    (1)求证:CF=BF;
    (2)若CD=6,AC=8,求⊙O的半径及CE的长.
    20.(本小题12分)
    如图,在圆内接四边形ABCD中,CD为∠BCA的外角的平分线,F为AD上一点,BC=AF,延长DF与BA的延长线交于E.
    (1)求证:△ABD为等腰三角形.
    (2)求证:AC⋅AF=DF⋅FE.
    21.(本小题12分)
    某数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A处测得河流左岸C处的俯角为α,无人机沿水平线AF方向继续飞行12米至B处,测得河流右岸D处的俯角为30°,线段AM=24 3米为无人机距地面的铅直高度,点M,C,D在同一条直线上,其中tanα=2.求河流的宽度CD(结果精确到1米,参考数据: 3≈1.7).
    22.(本小题14分)
    根据素材解决问题.
    答案和解析
    1.【答案】B
    【解析】解:由题意可得:sinα=AHAB=AHm,
    则坡AB的铅垂高度AH为:AH=msinα米.
    故选:B.
    直接利用锐角三角函数关系,进而计算得出答案.
    此题主要考查了解直角三角形的应用,正确掌握边角关系是解题关键.
    2.【答案】A
    【解析】解:过点O作OD⊥BC于E,交半圆O于D点,连接AC,如图,
    ∵半圆O沿BC所在的直线折叠,圆弧BC恰好过圆心O,
    ∴ED=EO,
    ∴OE=12OB,
    ∵OD⊥BC,
    ∴∠OBC=30°,即∠ABC=30°,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴BC= 3AC=3 3.
    故选:A.
    过点O作OD⊥BC于E,交半圆O于D点,连接AC,根据折叠的性质得到ED=EO,则OE=12OB,则可根据含30度的直角三角形三边的关系得∠OBC=30°,即∠ABC=30°,根据圆周角定理得∠ACB=90°,根据含30度的直角三角形三边的关系得BC= 3AC=3 3.
    本题考查了垂径定理,折叠的性质和圆周角定理,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    3.【答案】B
    【解析】解:连接OE,如图,
    ∵∠ABC=32°,
    ∴∠AOC=2∠ABC=64°,
    ∴∠BOC=180°−∠AOC=116°,
    ∵点E是劣弧BC的中点,
    ∴∠COE=∠BOE=12∠BOC=58°,
    ∴∠CDE=12∠COE=29°.
    故选:B.
    连接OE,如图,先根据圆周角定理得到∠AOC=2∠ABC=64°,则利用邻补角可计算出∠BOC=116°,再根据圆心角、弧、弦的关系,利用点E是劣弧BC的中点得到∠COE=∠BOE=58°,然后根据圆周角定理得到∠CDE的度数.
    本题考查了周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆心角、弧、弦的关系.
    4.【答案】A
    【解析】解:反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设直角三角形中两锐角都大于45°,
    故选:A.
    根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.
    本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.
    5.【答案】B
    【解析】【分析】
    此题主要考查了圆内接四边形的性质和圆周角定理的综合应用,熟练掌握相关知识点是解决问题的关键.
    由于四边形ABCD内接于⊙O,根据圆内接四边形的对角互补即可求得∠A的度数,而∠A、∠BOD是同弧所对的圆周角和圆心角,根据圆周角定理即可得到∠BOD的度数.
    【解答】
    解:∵四边形ABCD内接于⊙O,
    ∴∠A+∠C=180°,而∠C=130°,
    ∴∠A=180°−∠C=50°,
    ∴∠BOD=2∠A=100°.
    6.【答案】A
    【解析】解:连接OC,
    ∵BD=BC,
    ∴∠BOD=∠BOC=50°,
    ∵OB=OC,
    ∴∠ABC=∠OCB=12(180°−∠BOC)=65°,
    故选:A.
    连接OC,根据圆心角、弧、弦的关系可得∠BOD=∠BOC=50°,然后利用等腰三角形的性质以及三角形内角和定理进行计算,即可解答.
    本题考查了三角形的外接圆与外心,圆心角、弧、弦的关系,等腰三角形的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
    7.【答案】B
    【解析】解:如图,过点A作AH⊥BC于点H,
    在Rt△ABH中,AH=AB⋅sin∠ABH=8×sin60°=4 3,
    ∵BC=2CF,BC=4 3,
    ∴CF=2 3,
    ∵四边形DCFE是平行四边形,
    ∴DE=CF=2 3,
    由图可得△ADE和△DEB以DE为底边时,它们的高的和为AH的长,
    ∴S阴影=S△ADE+S△DEB=12DE⋅AH=12×2 3×4 3=12.
    故选:B.
    作出辅助线,构造直角三角形,求出AH,根据已知条件求出DE,由图可得△ADE和△DEB以DE为底边时,它们的高的和为AH的长,进而求出阴影部分的面积.
    本题考查解直角三角形,平行四边形的性质及三角形的面积,解题的关键是作出相应的辅助线.
    8.【答案】B
    【解析】【分析】
    本题考查了点与圆的位置关系,坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.
    根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,当点C是线段DB延长线与圆B的交点时,OM最大,再根据三角形的中位线定理可得结论.
    【解答】
    解:如图,
    ∵点C为平面直角坐标系内一点,BC=1,
    ∴点C在⊙B上,且半径为1,
    取OD=OA=2,连接CD,
    ∵M为AC中点,
    ∴AM=CM
    ∵AM=CM,OD=OA,
    ∴OM是△ACD的中位线,
    ∴OM=12CD.
    当OM最大时,即CD最大,而当D,B,C三点共线,即C在DB的延长线上时,OM最大,
    ∵OB=OD=2,∠BOD=90°,
    ∴BD= OD2+OB2=2 2,
    ∴CD=2 2+1,
    ∴OM=12CD= 2+12,即OM的最大值为 2+12,
    故选:B.
    9.【答案】ABCD
    【解析】解:A、在同圆或等圆中,相等的圆心角所对的弧相等,本选项符合题意;
    B、平分弦(不是直径)的直径垂直于弦,故本选项符合题意;
    C、能够互相重合的两条弧是等弧,长度相等的两条弧不一定是等弧,故本选项符合题意;
    D、圆是轴对称图形,任何一条直径所在的直线都是对称轴,故本选项符合题意;
    故选:ABCD.
    由圆心角、弧、弦的关系,垂径定理,等弧的概念,圆的对称性,即可判断.
    本题考查圆心角、弧、弦的关系,垂径定理,等弧的概念,圆的认识,掌握以上知识点是解题的关键.
    10.【答案】BC
    【解析】解:∵AD⊥BC,
    ∴∠ADB=∠ADC=90°,
    ∴∠C+∠DAC=90°,
    ∵∠BAC=90°,
    ∴∠B+∠C=90°,
    ∴∠B=∠DAC,
    在Rt△ABC中,tanB=ACAB,故选项A、D不正确;
    在Rt△ABD中,tanB=ADBD,故选项B正确;
    在Rt△ADC中,tan∠DAC=DCAD,
    ∴tanB=DCAD,故选项C正确;
    故选:BC.
    根据正切函数的定义即可一一判断.
    本题考查了正切函数的定义和直角三角形的性质,熟练掌握和运用正切函数的定义和求法是解题的关键.
    11.【答案】ABC
    【解析】解:A、CD=MC,CD=MC,因此∠COM=∠COD,故A符合题意;
    B、连接ON,由OM=ON=MN,得到∠MON=60°,而MC=CD=DN,因此∠AOB=13∠MON=20°,故B符合题意;
    C、由OM=ON,∠OMK=∠ONL,∠MOK=∠NOL,得到△OMK≌△ONL(ASA),因此OK=OL,得到∠OKL=∠OLK,由OC=OD,得到∠OCD=∠ODC,则∠OKL=∠OCD,得到MN/​/CD,
    故C符合题意;
    D、由圆周角定理得到∠COD=∠MND,故D不符合题意.
    故选:ABC.
    由圆周角定理,圆心角、弧、弦的关系,平行线的判定,即可解决问题.
    本题考查圆周角定理,圆心角、弧、弦的关系,平行线的判定,关键是掌握圆心角、弧、弦的关系,圆周角定理.
    12.【答案】A,C
    【解析】解:A选项中知道∠ACB和AC长,可以根据AB=AC⋅tan∠ACB求出AB,
    故A选项正确;
    B选项中tan∠F=DEEF,得不到与AB相关的具体数量关系,
    故B选项不正确;
    C选项中根据ABtan∠ADB−ABtan∠ACB=CD,即可计算出AB,
    故C选项正确;
    D选项中∠F+∠ADB=90°,FB得不到与AB相关的具体数量关系,
    故D选项不正确,
    故答案为:A,C.
    分别根据选项中的数据计算AB的值即可.
    本题主要考查解直角三角形的知识,熟练掌握三角函数的概念是解题的关键.
    13.【答案】105°
    【解析】解:∵|sinA−12|+( 22−csB)2=0,
    ∴sinA−12=0, 22−csB=0,
    即sinA=12,csB= 22,
    ∴∠A=30°,∠B=45°,
    ∴∠C=180°−∠A−∠B=105°.
    故答案为:105°.
    先利用非负数的性质得到sinA−12=0, 22−csB=0,即sinA=12,csB= 22,则根据特殊角的三角函数值得到∠A、∠B的度数,然后根据三角形内角和定理计算出∠C的度数.
    本题考查了特殊角的三角函数值:记住特殊角的三角函数值是解决问题的关键.也考查了非负数的性质.
    14.【答案】2
    【解析】解:如图,连接BE,
    ∵四边形BCED是正方形,
    ∴DF=CF=12CD,BF=12BE,CD=BE,BE⊥CD,
    ∴BF=CF,
    根据题意得:AC/​/BD,
    ∴△ACP∽△BDP,
    ∴DP:CP=BD:AC=1:3,
    ∴DP:DF=1:2,
    ∴DP=PF=12CF=12BF,
    在Rt△PBF中,tan∠BPF=BFPF=2,
    ∵∠APD=∠BPF,
    ∴tan∠APD=2.
    故答案为:2.
    首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.
    此题考查了相似三角形的判定与性质与三角函数的定义.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用.
    15.【答案】170或70
    【解析】解:作半径OD⊥AB于C,连接OB,
    由垂径定理得:BC=12AB=50cm,
    在Rt△OBC中,OC= 1302−502=120cm,
    当水位上升到圆心以下,水面宽240cm时,
    则OC′= 1302−1202=50cm,
    水面上升的高度为:120−50=70cm;
    当水位上升到圆心以上时,水面上升的高度为:120+50=170cm,
    综上可得,水面上升的高度为170cm或70cm.
    故答案为:170或70.
    分两种情形分别求解即可解决问题;
    本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.
    16.【答案】5
    【解析】解:如图,分别作AB、BC的中垂线,两直线的交点为O,
    以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,
    由图可知,⊙O还经过点D、E、F、G、H这5个格点,
    故答案为:5.
    根据圆的确定条件先做出过A,B,C三点的外接圆,从而得出答案.
    本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.
    17.【答案】解:(1)原式= 3× 32−3×( 22)2
    =32−32
    =0;
    (2)原式=12−2×( 22)2+3×( 33)2+12
    =12−2×12+3×13+12
    =12−1+1+12
    =1.
    【解析】利用特殊锐角三角函数值计算即可.
    本题考查特殊锐角三角函数值,此为基础且重要知识点,必须熟练掌握.
    18.【答案】解:过B作BD⊥AC于D,则∠BDA=∠BDC=90°,
    ∵∠A=45°,
    ∴∠ABD=45°=∠A,
    ∴AD=BD,
    ∵AB=6,
    ∴BD=AD=AB×sin∠A=6× 22=3 2,
    ∵∠ABC=75°,∠ABD=45°,
    ∴∠CBD=30°,
    ∵tan30°=CDBD,
    ∴CD=BD×tan30°=3 2× 33= 6,
    ∴AC=AD+CD=3 2+ 6,
    设AB边上的高为h,
    ∵S△ACB=12AC⋅BD=12×(3 2+ 6)×3 2
    =9+3 3,
    ∴12AB⋅h=9+3 3,
    解得:h=3+ 3,
    即AB边上的高为3+ 3.
    【解析】过B作BD⊥AC于D,则∠BDA=∠BDC=90°,然后根据等腰直角三角形的性质以及含30度角的直角三角形的性质即可求出AC与BD的长度,然后根据△ABC的面积即可求出AB边上的高.
    本题考查解直角三角形,解题的关键是熟练运用勾股定理以及锐角三角函数的定义,本题属于基础题型.
    19.【答案】解:(1)证明:∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠A=90°−∠ABC.
    ∵CE⊥AB,
    ∴∠CEB=90°,
    ∴∠ECB=90°−∠ABC,
    ∴∠ECB=∠A.
    又∵C是BD的中点,
    ∴CD=CB,
    ∴∠DBC=∠A,
    ∴∠ECB=∠DBC,
    ∴CF=BF;
    (2)∵BC=CD,
    ∴BC=CD=6.
    ∵∠ACB=90°,
    ∴AB= BC2+AC2= 62+82=10,
    ∴⊙O的半径为5.
    ∵S△ABC=12AB·CE=12BC·AC,
    ∴CE=BC⋅ACAB=6×810=245.
    【解析】(1)要证明CF=BF,可以证明∠ECB=∠DBC;由AB是⊙O的直径,得∠ACB=90°,由CE⊥AB,得∠CEB=90°,则∠ECB=∠A,又∠DBC=∠A,则∠ECB=∠DBC;
    (2)在Rt△ACB中,AB2=AC2+BC2,又知BC=CD,可以求得AB的长,即可求得圆的半径;再根据三角形面积可以求得CE的长.
    本题考查了圆周角定理、等腰三角形的性质等知识.此题综合性很强,难度适中,注意数形结合思想与方程思想的应用,注意辅助线的作法.
    20.【答案】证明:(1)∵四边形ABCD是圆O的内接四边形,
    ∴∠DCB+∠DAB=180°,
    ∵∠MCD+∠DCB=180°,
    ∴∠MCD=∠DAB,
    ∵CD为∠BCA的外角的平分线,
    ∴∠MCD=∠ACD,
    ∵∠DCA和∠DBA都对弧AFD,
    ∴∠DCA=∠DBA,
    ∴∠DAB=∠DBA,
    ∴DB=DA,
    ∴△ABD为等腰三角形.
    (2)由(1)知AD=BD,BC=AF,则弧AFD=弧BCD,弧AF=弧BC,
    ∴∠BDC=∠ADF,弧CD=弧DF,CD=DF,①
    ∴∠BDC+∠BDA=∠ADF+∠BDA,
    即∠CDA=∠BDF,
    而∠FAE+∠BAF=∠BDF+∠BAF=180°,
    ∴∠FAE=∠BDF=∠CDA,
    同理∠DCA=∠AFE
    ∴在△CDA与△FAE中,∠CDA=∠FAE,∠DCA=∠AFE,
    ∴△CDA∽△FAE,
    ∴即CD⋅EF=AC⋅AF,
    又由①有AC⋅AF=DF⋅EF命题即证.
    【解析】(1)CD为∠BCA的外角的平分线得到∠MCD=∠ACD,求出∠MCD=∠DAB推出∠DBA=∠DAB即可;
    (2)由在△CDA与△FAE中,∠CDA=∠FAE,∠DCA=∠AFE,得出△CDA∽△FAE,即可推出CD⋅EF=AC⋅AF.
    本题主要考查对圆内接四边形,全等三角形的性质和判定,相似三角形的性质和判定,圆周角定理等知识点的理解和掌握,能综合运用这些性质进行推理是证此题的关键.
    21.【答案】解:过点B作BE⊥MD于点E.则四边形AMEB是矩形.

    ∴BE=AM=24 3,ME=AB=12米,
    ∵AF//MD,
    ∴∠ACM=α.
    在Rt△AMC中,∠AMC=90°,
    ∴tanα=AMMC=2,
    ∴24 3MC=2,
    ∴MC=12 3米,
    在Rt△BDE中,∠BED=90°,∠DBE=90°−30°=60°,
    ∴tan∠DBE=DEBE,
    ∴tan60°=DE24 3= 3,
    ∴DE=24 3× 3=72(米),
    CD=DE−CE=DE−(MC−ME)=72−(12 3−12)=84−12 3≈84−12×1.7=84−20.4=64(米).
    答:河流的宽度CD约为64米.
    【解析】过点B作BE⊥MD于点E,分别解Rt△AMC、Rt△BDE即可.
    本题考查了关于俯仰角的解直角三角形的问题,作垂线构造直角三角形是解答本题的关键.
    22.【答案】解:任务1,设 圆心为点O,则点O在CD延长线上,延长CD,则CD经过点O,连结AO,如图,

    设桥拱的半径为r m,则OD=(r−4)m,
    ∵OC⊥AB,
    ∴AD=BD=12AB=8m,
    ∵OD2+AD2=OA2,
    ∴(r−4)2+82=r2,
    ∴r=10,
    ∴圆形拱桥的半径为10m.
    任务2,根据图3状态,货船不能通过圆形桥拱,至少要增加(900−500 3)吨的货物才能通过.理由:
    当EH是⊙O的弦时,EH与OC的交点为M,连接OE,OH,如图,

    ∵四边形EFGH为矩形,
    ∴EH/​/FG,
    ∵OC⊥AB,
    ∴OM⊥EH.
    ∴EM=12EH=5,
    ∴OM= OE2−EM2=5 3m,
    ∵OD=6m,
    ∴DM=5 3−6<3,
    ∴根据图3状态,货船不能通过圆形桥拱,
    ∴船在水面部分可以下降的高度y=3−(5 3−6)=(9−5 3)m.
    ∵y=1100x,
    ∴x=100(9−5 3)=(900−500 3)吨,
    ∴至少要增加(900−500 3)吨的货物才能通过.
    【解析】任务1,设圆心为点O,则点O在CD延长线上,延长CD,则CD经过点O,连结AO,设桥拱的半径为r m,则OD=(r−4)m,由勾股定理,垂径定理,列出关于半径的方程,即可解决问题;
    任务2,由勾股定理得到货船不能通过圆形桥拱,通过计算,即可得到需要增加的货物的吨数.
    本题考查垂径定理,勾股定理,熟练掌握垂径定理,勾股定理是解题的关键.设计货船通过圆形拱桥的方案
    素材1
    图1中有一座圆拱石桥,图2是其圆形桥拱的示意图,测得水面宽AB=16m,拱顶离水面的距离CD=4m.
    素材2
    如图3,一艘货船露出水面部分的横截面为矩形EFGH,测得EF=3m,EH=10m.因水深足够,货船可以根据需要运载货物.据调查,船身下降的高度y(米)与货船增加的载重量x(吨)满足函数关系式y=1100x.
    问题解决
    任务1
    确定桥拱半径
    求圆形桥拱的半径
    任务2
    拟定设计方案
    根据图3状态,货船能否通过圆形拱桥?若能,最多还能卸载多少吨货物?若不能,至少要增加多少吨货物才能通过?
    相关试卷

    2023-2024学年浙江省温州市鹿城区南浦实验中学九年级(上)第一次月考数学试卷(含解析): 这是一份2023-2024学年浙江省温州市鹿城区南浦实验中学九年级(上)第一次月考数学试卷(含解析),共27页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    山东省潍坊市诸城市实验初级中学2023-2024学年九年级上学期第一次月考数学试题(无答案): 这是一份山东省潍坊市诸城市实验初级中学2023-2024学年九年级上学期第一次月考数学试题(无答案),共6页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年湖南省长沙实验中学教育集团九年级(上)第一次月考数学试卷(含解析): 这是一份2023-2024学年湖南省长沙实验中学教育集团九年级(上)第一次月考数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map