所属成套资源:北师大版数学九年级下册教案教学设计全册
- 1.6 利用三角函数测高教案教学设计 教案 4 次下载
- 2.1二次函数教案教学设计 教案 5 次下载
- 2.2.1二次函数的图像与性质教案教学设计 教案 5 次下载
- 2.3 确定二次函数的表达式教案教学设计 教案 5 次下载
- 2.4 二次函数的应用图形面积的最大值教案教学设计 教案 4 次下载
数学九年级下册第二章 二次函数1 二次函数教学设计
展开
这是一份数学九年级下册第二章 二次函数1 二次函数教学设计,共6页。教案主要包含了次函数等内容,欢迎下载使用。
课题
2.2.1二次函数的图象与性质y=ax2和y=ax2+c
单元
第二单元
学科
数学
年级
九年级
学习
目标
知识与技能:
①能画出二次函数y=ax2和y=ax2+c(a≠0)的图象;
②掌握二次函数y=ax2与y=ax2+c(a≠0)图象之间的联系;
③能灵活运用二次函数y=ax2和y=ax2+c(a≠0)的知识解决简单的问题。
过程与方法:
①让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系,利用数形结合的思想解决实际问题,提高解决问题的能力。
②逐步培养学生分析问题、解决问题的能力;
③领会教学活动中的类比思想,提高学生学习数学的积极性;
情感态度与价值观:
①通过积极参与数学活动过程,培养吃苦精神,发展合作意识和科学精神.
②选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.
重点
能画出二次函数y=ax2和y=ax2+c(a≠0)的图象,并掌握它们之间的联系
难点
能画出二次函数y=ax2和y=ax2+c(a≠0)的图象,并掌握它们之间的联系
教学过程
教学环节
教师活动
学生活动
设计意图
回顾知识
导入新课
活动探究
在上节课中,我们已经学习了抛物线y=ax2与y=-ax2的关系,问题:观察下列图象,抛物线y=ax2与y=-ax2(a>0)的关系是什么?
问题:形如y=2x2、y=x2、 y = 12x2、 y =- 12x2 、y=x2的二次函数的图象之间会存在什么关系呢?下面我们一起要探究.
二次函数y=ax2的图象及系数a对图象的影响
活动一:在直角坐标系中画出二函数 y=2x2的图象.
问题:二次函数 y = 2x2 的图象是什么形状?它与二 次函数 y = x2 的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?
①二次函数 y = 2x2 的图象:抛物线
②相同:形状相同、顶点(0,0)相同、开口都向上、对称轴相同(y轴)
不同:开口大小不一样
活动二:在图中画出 y = 12x2的图象,观察它与y = x2 、y = 2x2图象有什么相同和不同?
相同:形状相同、顶点(0,0)相同、开口都向上、对称轴相同(y轴)
不同:开口大小不一样
学生思考并回答问题。并跟着教师的讲解思路思考问题,并探究知识。
学生思考并回答问题。并跟着教师的讲解思路思考问题,并探究知识。
导入新课,利用导入的例子引起学生的注意力。
导入新课,利用导入的例子引起学生的注意力。
讲授新课
例题讲解
课堂小结
从刚刚的或者探究中中,我们可以发现:
二次函数y=ax2 的图象性质
1.图象:抛物线;
2.当a>0时,抛物线开口向上;
3.抛物线的顶点为(0,0);
4.抛物线的对称轴:y轴;
活动三:在图中画出 y =- 12x2、y = -x2 、y =-2x2图象有什么相同和不同?
结论:
1.二次函数y =- 12x2图象与 y = 12x2图象关于x轴对称;
2.对于二次函数y=ax²:
①当a>0时,a的绝对值越大,开口越小.
②当a0时,抛物线开口向上;
2.当a 0 时,向上平移c个单位长度得到.
当c < 0 时,向下平移-c个单位长度得到.
上下平移规律:
平方项不变,常数项上加下减.
c决定顶点的纵坐标.
【例1】把抛物线y = 2x2向上平移5个单位,会得到哪条抛物线?向下平移2个单位呢?
【例2】在图中画出 y =- 12x2、y =-2x2的图象.
【小结】二次函数y=ax2+c(a ≠ 0)的特点
结合导入的思考和老师的讲解,利用探究学习并掌握二次函数的图像与性质。
老师在例题讲解的时候,自己先思考,然后再听老师讲解。
学生跟着老师一起进行本节课的小结,学习一些新的方法。
讲授知识,让学生熟练利用探究学习并掌握二次函数的图像与性质。
巩固加深对知识的理解与应用,也让学生知道本节课的学习内容和重点。
巩固加深对知识的理解与应用,也让学生知道本节课的学习内容和重点。
随堂练习
1、抛物线y=2x2向下平移4个单位,就得到抛物线 y = 2x2-4 .
2、填表:
3.已知(m,n)在y=ax2+a(a不为0)的图象上,(-m,n) _在_(填“在”或“不在”)y=ax2+a(a不为0)的图象上.
4. 若y=x2+(k-2)的顶点是原点,则k__=2_;若顶点位于x轴上方,则k_>2_;若顶点位于x轴下方,则k 0 时, y随x的增大而减小;当x =0 时,函数y有最大值,最大值y是 1 ,其图象与y轴的交点坐标是 (0,1) .
(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.开口方向向上,对称轴是y轴,顶点坐标(0,-3).
学生自主完课堂练习中的练习,然后在做完之后根据老师的讲解进一步巩固知识。
借助练习,检测学生的知识掌握程度,同时便于学生巩固知识。
中考链接
(2019•嘉定区)将抛物线y=x2﹣2x﹣1向上平移1个单位,平移后所得抛物线的表达式是( )
A.y=x2﹣2xB.y=x2﹣2x﹣2
C.y=x2﹣x﹣1D.y=x2﹣3x﹣1
解:∵将抛物线y=x2﹣2x﹣1向上平移1个单位,∴平移后抛物线的表达式y=x2﹣2x﹣1+1,即y=x2﹣2x.故选:A.
学生自主完课堂练习中的练习,然后在做完之后根据老师的讲解进一步巩固知识。
借助练习,检测学生的知识掌握程度,同时便于学生巩固知识。
课堂小结
在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:
跟着老师回忆知识,并记忆本节课的知识。
帮助学生加强记忆知识。
板书
二次函数y=ax2+c(a≠0)的图象和性质
借助板书,让学生知识本节课的重点。
课后练习
教材第36页习题2.3第1、2、3题.
相关教案
这是一份北师大版九年级下册第二章 二次函数1 二次函数教案设计,共19页。教案主要包含了提出问题,分析问题,解决问题,做一做,课堂练习,小结,作业等内容,欢迎下载使用。
这是一份初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减教学设计,共4页。教案主要包含了复习旧知,引出新知,自主探究,典例分析等内容,欢迎下载使用。
这是一份数学九年级下册2 二次函数的图像与性质教学设计及反思,共3页。教案主要包含了合作学习,探究二次函数和图像之间的关系,谈收获,布置作业等内容,欢迎下载使用。