还剩7页未读,
继续阅读
所属成套资源:湘教版数学八年级下册同步练习题全册
成套系列资料,整套一键下载
湘教版数学八年级下册1.2.2直角三角形的性质与判定练习题
展开
这是一份湘教版数学八年级下册1.2.2直角三角形的性质与判定练习题,共10页。
1.2.2直角三角形的性质与判定练习题一、选择题1. 一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以到达该建筑物的最大高度是( ) A.12米 B.13米 C.14米 D.15米2. 如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( ) A.90米 B.100米 C.120米 D.150米3. 在长、宽、高分别为12 cm、4 cm、3 cm的木箱中,放一根木棒,能放进去的木棒的最大长度为( ) A.5 cm B.12 cm C.13 cm D. cm4. 如图,一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( ) A.3.8米 B.3.9米 C.4米 D.4.4米5. 如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤156. 为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )A.0.7米 B.0.8米 C.0.9米 D.1.0米7. 一根旗杆在离地面12米处断裂,旗杆顶部落在离旗杆底部5米处.旗杆折断之前有 米.A.23米 B.15米 C.25米 D.22米8. 如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是( )尺.A.3.5 B.4 C.4.5 D.5二、填空题9. 如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200 m,结果他在水中实际游了520 m,该河流的宽度为__________m.10. 如图,长方体的底面边长分别为2cm和4cm,高为5cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.11. 如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长则不超过 米。12.为了丰富居民的业余生活,某社区要在如图所示AB所在的直线上建一图书室,本社区有两所学校,所在的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B,已知AB=25 km,CA=15 km,DB=10 km,则图书室E应该建在距点A km处,才能使它到两所学校的距离相等。三、解答题13. 如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?14. 小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.15. 如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.答案:1. A分析:由题意可知消防车的云梯长、地面、建筑物高构成一直角三角形,斜边为消防车的云梯长,根据勾股定理就可求出高度。解:,故选A。2. B解:如图,构造Rt△ABC,根据勾股定理得AC2=(40+40)2+(70-10)2=10000=1002,即AC=100(米).故选B3. C分析:要判断能否放进去,关键是求得该木箱中的最长线段的长度,即AD的长,通过比较它们的大小作出判断.解:解:如图,连接AC、AD.在Rt△ABC中,有AC2=AB2+BC2=160,在Rt△ACD中,有AD2=AC2+CD2=169,∵AD= ,∴能放进去的木棒的最大长度为13.故选:C.4.B分析:利用勾股定理解答即可。解:这条木板的长为=3.9(米).5.C分析:如图,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高;当吸管底部在A点时吸管在罐内部分a最长,此时a可以利用勾股定理在Rt△ABO中即可求出.解:当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB= ==13,∴此时a=13,所以12≤a≤13.故答案为:12≤a≤13.故选C。6. A分析:仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.解:梯脚与墙角距离: =0.7(米).故选A.7. C根据题意,可以知道两直角边的长度,从而构造直角三角形,根据勾股定理就可求出斜边的长.【解答】解:∵52+122=169,∴=13(m),∴13+12=25(米).∴旗杆折断之前有25米.故答案为:25.8. C分析:仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可.解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62,解得:h=4.5.故选:C.9. 分析:利用勾股定理解答即可。解:解:根据题意可知BC=200米,AC=520米,由勾股定理得,则,AB2= AC2 -BC2解得AB=480.答:该河的宽度BA为480米.故答案为:480.10. 解:如图所示,因为PA=2×(4+2)=12cm,AQ=5cm,所以PQ2=PA2+AQ2=122+52=132,所以PQ=13cm.答案:1311.分析:为了不让羊吃到菜,必须<等于点A到圆的最小距离.要确定最小距离,连接OA交半圆于点E,即AE是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.解:解:连接OA,交⊙O于E点,在Rt△OAB中,OB=6,AB=8,所以OA= =10;又OE=OB=6,所以AE=OA-OE=4.因此选用的绳子应该不>4,12. 解:设AE=x km,则BE=(25-x)km. 在Rt△ACE中,由勾股定理得:CE2=AE2+AC2=x2+152. 同理可得:DE2=(25-x)2+102. 若CE=DE,则 x2+152=(25-x)2+102.解得x=10. 答:图书室E应该建在距A点10 km处,才能使它到两所学校的距离相等.13. 分析:首先根据题意,正确画出图形,还要根据题意确定已知线段的长,再根据勾股定理列方程进行计算.解:设BD=x米,则AD=(10+x)米,CD=(30-x)米,根据题意,得:(30-x)2-(x+10)2=202,解得x=5.即树的高度是10+5=15米.14. 分析:根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB的长,即旗杆的高.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.15. 分析:在△RtAOB中依据勾股定理可知AB2=40,在Rt△A′OB′中依据勾股定理可求得OB′的长,从而可求得BB′的长.解:在△RtAOB中,由勾股定理可知AB2=AO2+OB2=40,在Rt△A′OB′中由勾股定理可知A′B′2=A′O2+OB′2.∵AB=A′B′,∴A′O2+OB′2=40.∴OB′==.∴BB′=6﹣.
1.2.2直角三角形的性质与判定练习题一、选择题1. 一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以到达该建筑物的最大高度是( ) A.12米 B.13米 C.14米 D.15米2. 如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( ) A.90米 B.100米 C.120米 D.150米3. 在长、宽、高分别为12 cm、4 cm、3 cm的木箱中,放一根木棒,能放进去的木棒的最大长度为( ) A.5 cm B.12 cm C.13 cm D. cm4. 如图,一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( ) A.3.8米 B.3.9米 C.4米 D.4.4米5. 如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤156. 为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )A.0.7米 B.0.8米 C.0.9米 D.1.0米7. 一根旗杆在离地面12米处断裂,旗杆顶部落在离旗杆底部5米处.旗杆折断之前有 米.A.23米 B.15米 C.25米 D.22米8. 如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是( )尺.A.3.5 B.4 C.4.5 D.5二、填空题9. 如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200 m,结果他在水中实际游了520 m,该河流的宽度为__________m.10. 如图,长方体的底面边长分别为2cm和4cm,高为5cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.11. 如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长则不超过 米。12.为了丰富居民的业余生活,某社区要在如图所示AB所在的直线上建一图书室,本社区有两所学校,所在的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B,已知AB=25 km,CA=15 km,DB=10 km,则图书室E应该建在距点A km处,才能使它到两所学校的距离相等。三、解答题13. 如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?14. 小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.15. 如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.答案:1. A分析:由题意可知消防车的云梯长、地面、建筑物高构成一直角三角形,斜边为消防车的云梯长,根据勾股定理就可求出高度。解:,故选A。2. B解:如图,构造Rt△ABC,根据勾股定理得AC2=(40+40)2+(70-10)2=10000=1002,即AC=100(米).故选B3. C分析:要判断能否放进去,关键是求得该木箱中的最长线段的长度,即AD的长,通过比较它们的大小作出判断.解:解:如图,连接AC、AD.在Rt△ABC中,有AC2=AB2+BC2=160,在Rt△ACD中,有AD2=AC2+CD2=169,∵AD= ,∴能放进去的木棒的最大长度为13.故选:C.4.B分析:利用勾股定理解答即可。解:这条木板的长为=3.9(米).5.C分析:如图,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高;当吸管底部在A点时吸管在罐内部分a最长,此时a可以利用勾股定理在Rt△ABO中即可求出.解:当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB= ==13,∴此时a=13,所以12≤a≤13.故答案为:12≤a≤13.故选C。6. A分析:仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.解:梯脚与墙角距离: =0.7(米).故选A.7. C根据题意,可以知道两直角边的长度,从而构造直角三角形,根据勾股定理就可求出斜边的长.【解答】解:∵52+122=169,∴=13(m),∴13+12=25(米).∴旗杆折断之前有25米.故答案为:25.8. C分析:仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可.解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62,解得:h=4.5.故选:C.9. 分析:利用勾股定理解答即可。解:解:根据题意可知BC=200米,AC=520米,由勾股定理得,则,AB2= AC2 -BC2解得AB=480.答:该河的宽度BA为480米.故答案为:480.10. 解:如图所示,因为PA=2×(4+2)=12cm,AQ=5cm,所以PQ2=PA2+AQ2=122+52=132,所以PQ=13cm.答案:1311.分析:为了不让羊吃到菜,必须<等于点A到圆的最小距离.要确定最小距离,连接OA交半圆于点E,即AE是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.解:解:连接OA,交⊙O于E点,在Rt△OAB中,OB=6,AB=8,所以OA= =10;又OE=OB=6,所以AE=OA-OE=4.因此选用的绳子应该不>4,12. 解:设AE=x km,则BE=(25-x)km. 在Rt△ACE中,由勾股定理得:CE2=AE2+AC2=x2+152. 同理可得:DE2=(25-x)2+102. 若CE=DE,则 x2+152=(25-x)2+102.解得x=10. 答:图书室E应该建在距A点10 km处,才能使它到两所学校的距离相等.13. 分析:首先根据题意,正确画出图形,还要根据题意确定已知线段的长,再根据勾股定理列方程进行计算.解:设BD=x米,则AD=(10+x)米,CD=(30-x)米,根据题意,得:(30-x)2-(x+10)2=202,解得x=5.即树的高度是10+5=15米.14. 分析:根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB的长,即旗杆的高.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.15. 分析:在△RtAOB中依据勾股定理可知AB2=40,在Rt△A′OB′中依据勾股定理可求得OB′的长,从而可求得BB′的长.解:在△RtAOB中,由勾股定理可知AB2=AO2+OB2=40,在Rt△A′OB′中由勾股定理可知A′B′2=A′O2+OB′2.∵AB=A′B′,∴A′O2+OB′2=40.∴OB′==.∴BB′=6﹣.
相关资料
更多