所属成套资源:备战2024年中考数学一轮复习高效讲练测(全国通用)
重难点08 全等三角形8种模型(一线三等角、手拉手模型、倍长中线、截长补短、婆罗摩笈多、半角模型、平行线中点模型与雨伞模型)-备战2024年中考数学一轮复习高效讲练测(全国通用)
展开
这是一份重难点08 全等三角形8种模型(一线三等角、手拉手模型、倍长中线、截长补短、婆罗摩笈多、半角模型、平行线中点模型与雨伞模型)-备战2024年中考数学一轮复习高效讲练测(全国通用),文件包含重难点突破08全等三角形8种模型一线三等角手拉手模型倍长中线截长补短婆罗摩笈多半角模型平行线中点模型与雨伞模型原卷版docx、重难点突破08全等三角形8种模型一线三等角手拉手模型倍长中线截长补短婆罗摩笈多半角模型平行线中点模型与雨伞模型解析版docx等2份试卷配套教学资源,其中试卷共189页, 欢迎下载使用。
平行线中点模型与雨伞模型)
目 录
TOC \ "1-3" \n \h \z \u
\l "_Tc156575233" 题型01 一线三等角模型(含一线三垂直模型)
\l "_Tc156575234" 题型02 手拉手模型
\l "_Tc156575235" 题型03 倍长中线模型
\l "_Tc156575236" 题型04 平行线中点模型与雨伞模型
\l "_Tc156575237" 题型05 截长补短模型
\l "_Tc156575238" 题型06 婆罗摩笈多模型
\l "_Tc156575239" 题型07 半角模型
题型01 一线三等角模型(含一线三垂直模型)
【一线三垂直模型介绍】只要出现等腰直角三角形,可以过直角点作一条直线,然后过45°顶点作直线的垂线,构造三垂直,所得两个直角三角形全等.根据全等三角形倒边,得到线段之间的数量关系.
【一线三等角模型介绍】三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角.
一线三等角类型:
(同侧)已知∠A=∠CPD=∠B=∠α,CP=PD
(异侧)已知∠EAC=∠ABD=∠DPC=∠α,CP=PD
1.(2023·陕西西安·校联考模拟预测)小西在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O处用一根细绳悬挂一个小球A,小球A可以自由摆动,如图,OA表示小球静止时的位置.当小明用发声物体靠近小球时,小球从OA摆到OB位置,此时过点B作BD⊥OA于点D,当小球摆到OC位置时,OB与OC恰好垂直(图中的A、B、O、C在同一平面上),过点C作CE⊥OA于点E,测得BD=8cm,OA=17cm.求AE的长.
2.(2023·全国·九年级专题练习)感知:数学课上,老师给出了一个模型:如图1,点A在直线DE上,且∠BDA=∠BAC=∠AEC=90°,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角“模型.
应用:
(1)如图2,Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.
(2)如图3,在△ABC中,D是BC上一点,∠CAD=90°,AC=AD,
∠DBA=∠DAB,AB=23,求点C到AB边的距离.
(3)如图4,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若
∠DEF=∠B,AB=10,BE=6,求 EFDE的值.
3.(2022·北京·校考一模)对于平面直角坐标系xOy中的图形M和点P,给出如下定义:将图形M绕点P顺时针旋转90°得到图形N,图形N称为图形M关于点P的“垂直图形”.例如,图1中点D为点C关于点P的“垂直图形”.
(1)点A关于原点O的“垂直图形”为点B.
①若点A的坐标为0,3,则点B的坐标为___________;
②若点B的坐标为3,1,则点A的坐标为___________;
(2)E(-3,3),F(-2,3),G(a,0),线段EF关于点G的“垂直图形”记为E'F',点E的对应点为E',点F的对应点为F'.
①求点E'的坐标(用含a的式子表示);
②若⊙O的半径为2,E'F'上任意一点都在⊙O内部或圆上,直接写出满足条件的EE'的长度的最大值.
4.(2021·浙江嘉兴·校考一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,∠ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC≌△CEB.
(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC∽△CEB.请你说明理由.
(2)学以致用:如图③,在平面直角坐标系中,直线y=12x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=32,请你求出直线CD的解析式.
(3)拓展应用:如图④,在矩形ABCD中,AB=4,BC=5,点E为BC边上一个动点,连接AE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.
5.(2022下·安徽淮北·九年级校联考阶段练习)数学模型学习与应用.【学习】如图1,∠BAD=90°,AB=AD,BC⊥AC于点C,DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D;又∠ACB=∠AED=90°,可以通过推理得到△ABC≌△DAE.我们把这个数学模型称为“一线三等角”模型;
(1)【应用】如图2,点B,P,D都在直线l上,并且∠ABP=∠APC=∠PDC=α.若BP=x,AB=2,BD=5,用含x的式子表示CD的长;
(2)【拓展】在△ABC中,点D,E分别是边BC,AC上的点,连接AD,DE,∠B=∠ADE=∠C,AB=5,BC=6.若△CDE为直角三角形,求CD的长;
(3)如图3,在平面直角坐标系xOy中,点A的坐标为2,4,点B为平面内任一点.△AOB是以OA为斜边的等腰直角三角形,试直接写出点B的坐标.
6.(2021上·山东青岛·九年级统考期中)【模型引入】
我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.
【模型探究】
如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF⊥AE,交直线CB于点F.
(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;
(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.
【模型应用】
(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H作HG⊥BD于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH的周长为8.正确的结论有 个.
(4)如图4,点E是正方形ABCD对角线BD上一点,连接AE,过点E作EF⊥AE,交线段BC于点F,交线段AC于点M,连接AF交线段BD于点H.给出下列四个结论,①AE=EF;②2DE=CF;③S△AEM=S△MCF;④BE=DE+2BF;正确的结论有 个.
【模型变式】
(5)如图5,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线与点N,求证:MD=MN
(6)如图6,在上一问的条件下,连接DN交BC于点F,连接FM,则∠FMN和∠NMB之间有怎样的数量关系?请给出证明.
【拓展延伸】
(7)已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,且满足OB>OA.点C在线段OA的延长线上,且AC=OB.如图7,在线段BO上截取BE,使BE=OA,连接CE.若∠OBA+∠OCE=β,当点B在射线OM上运动时,β的大小是否会发生变化?如果不变,请求出这个定值;如果变化,请说明理由.
(8)如图8,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EDM的面积是 .
7.(2022上·吉林长春·七年级长春市第四十五中学校考期中)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:
[模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.求证:BC=AE.
[模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.
[深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.若BC=21,AF=12,则△ADG的面积为_____________.
8.(2020上·河南安阳·八年级统考期末)(1)如图①.已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.则线段DE、BD与CE之间的数量关系是______;
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问:(1)中的结论是还否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图③,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE.若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.
9.(2023上·湖南长沙·八年级统考阶段练习)如图,在平面直角坐标系中,点Ba,b是第二象限内一点.
(1)若a、b满足等式a+32+b-2=0,求点B的坐标;
(2)如图1,在(1)的条件下,动点C以每秒2个单位长度的速度从O点出发,沿x轴的负半轴方向运动,同时动点A以每秒1个单位长度的速度从O点出发,沿y轴的正半轴方向运动,设运动的时间为t秒,当t为何值时,△ABC是AB为斜边的等腰直角三角形;
(3)如图2,C、A分别是x轴负半轴和y轴上正半轴上一点,且△ABC是以AB为斜边的等腰直角三角形,若E是线段OC上一点,连接BE交AC于点D,连接AE,当AE=CE,∠OAE=45∘,①求证:BE平分∠ABC; ②设BD的长为a,△ADB的面积为S.请用含a的式子表示S.
10.(2022上·江苏南京·八年级校考阶段练习)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC.
(1)如图①,若AB⊥AC,则BD与AE的数量关系为 ___________,CE与AD的数量关系为 ___________;
(2)如图②,判断并说明线段BD,CE与DE的数量关系;
(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.
题型02 手拉手模型
【模型介绍】两个顶角相等的等腰三角形共用顶角顶点,分别连接对应的两底角顶点,从而可以得到一个经典的全等模型.因为顶点相连的四条边,形象可以看作两双手,通常称为“手拉手模型”.
文字说明:1)点A 为共用顶角顶点,看作头
2)线段AB、AC为等腰∆ABC的两腰,看作两条手臂
线段AM、AN为等腰∆AMN的两腰,看作两条手臂
3)点B与点M看作左手,线段BM看作左手拉左手
点C与点N看作右手,线段CN看作右手拉右手
解题步骤:①找共用顶点,确定“四只手”;
②连接对应端点;
③SAS证明全等.
11.(2023·安徽黄山·校考一模)已知△ABC和△ADE均为等腰直角三角形,△ADE绕点A逆时针旋转一周.
(1)如图1,连接BD,CE,则BD与CE的数量关系为_______;直线BD与CE所夹角的度数为_______.
(2)当△ADE旋转至如图2所示的位置时,取BC,DE的中点M,N,连接MN,BD.试问:MNBD的值是否随△ADE的旋转而变化?若不变,请求出该值;若变化,请说明理由.
(3)M,N分别为BC,DE的中点,连接MN.若AB=310,AD=6,当△ADE旋转至B,D,E三点在同一条直线上时,请直接写出MN的值.
12.(2023下·江西抚州·九年级校考阶段练习)在△ABC中,AB=AC,∠BAC=α,点P是平面内不与点A,C重合的任意一点,连接PC,将线段PC绕点P旋转α得到线段PD,连接AP、CD、BD.
(1)当α=60°时,
①如图1,当点P在△ABC的边BC上时,线段PC绕点P顺时针旋转α得到线段PD,则AP与BD的数量关系是_______________;
②如图2,当点P在△ABC内部时,线段PC绕点P顺时针旋转α得到线段PD,①中AP与BD的数量关系还成立吗?若成立,请证明结论,若不成立,说明理由;
(2)当α=90°时,
①如图3,线段PC绕点P顺时针旋转α得到线段PD.试判断AP与BD的数量关系,并说明理由;
②若点A,C,P在一条直线上,且AC=3PC,线段PC绕点P逆时针旋转α得到线段DP,求BDAP的值.
13.(2023·河南洛阳·统考模拟预测)综合与实践综合与实践课上,数学研究小组以“手拉手图形”为主题开展数学活动两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.
(1)操作判断 已知点C为△ABC和△CDE的公共顶点,将△CDE绕点C顺时针旋转α0°
相关试卷
这是一份专题34 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用),文件包含专题34圆中的重要模型之阿基米德折弦定理模型婆罗摩笈多定理模型原卷版docx、专题34圆中的重要模型之阿基米德折弦定理模型婆罗摩笈多定理模型解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
这是一份专题13 全等模型-倍长中线与截长补短模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用),文件包含专题13全等模型-倍长中线与截长补短模型原卷版docx、专题13全等模型-倍长中线与截长补短模型解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
这是一份婆罗摩笈多模型讲义+练习含参考答案,共6页。