年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    5.6 函数y=Asin(ωx+φ)5种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      5.6 函数y=Asin(ωx+φ)5种常见考法归类(原卷版).docx
    • 解析
      5.6 函数y=Asin(ωx+φ)5种常见考法归类(解析版).docx
    5.6 函数y=Asin(ωx+φ)5种常见考法归类(原卷版)第1页
    5.6 函数y=Asin(ωx+φ)5种常见考法归类(原卷版)第2页
    5.6 函数y=Asin(ωx+φ)5种常见考法归类(原卷版)第3页
    5.6 函数y=Asin(ωx+φ)5种常见考法归类(解析版)第1页
    5.6 函数y=Asin(ωx+φ)5种常见考法归类(解析版)第2页
    5.6 函数y=Asin(ωx+φ)5种常见考法归类(解析版)第3页
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    5.6 函数y=Asin(ωx+φ)5种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册)

    展开

    这是一份5.6 函数y=Asin(ωx+φ)5种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册),文件包含56函数y=Asinωx+φ5种常见考法归类原卷版docx、56函数y=Asinωx+φ5种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
    1、“五点法”作图的实质
    (1)利用“五点法”作函数f(x)=Asin(ωx+φ)的图象,实质是利用函数的三个零点,两个最值点画出函数在一个周期内的图象.
    (2)用“五点法”作函数f(x)=Asin(ωx+φ)图象的步骤第一步:列表.
    第二步:在同一平面直角坐标系中描出各点.
    第三步:用光滑曲线连接这些点,形成图象.
    2、函数到函数(其中)的图象变换
    (1)先平移后伸缩:
    (2)先伸缩后平移:
    3、函数图象变换解题策略
    (1)对函数,或y=Acs(ωx+φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x变为x±|φ|,而不是ωx变为ωx±|φ|.
    (2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.
    (3)确定函数的图象经过变换后所得图象对应的函数的解析式,关键是明确左右平移的方向和横纵坐标伸缩的量,确定出的值.
    (4)由的图象得到的图象,可采用逆向思维,将原变换反过来逆推得到.
    4、给出y=Asin(ωx+φ)的图象的一部分,确定A,ω,φ的方法
    (1)逐一定参法:如果从图象可直接确定A和ω,则选取“五点法”中的“第一零点”的数据代入“ωx+φ=0”(要注意正确判断哪一点是“第一零点”)求得φ或选取最大值点时代入公式ωx+φ=eq \f(π,2)+2kπ,k∈Z,选取最小值点时代入公式ωx+φ=eq \f(3π,2)+2kπ,k∈Z.
    (2)待定系数法:将若干特殊点代入函数式,可以求得相关待定系数A,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.
    (3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y=Asin ωx,再根据图象平移、伸缩规律确定相关的参数.
    5、正弦、余弦型函数奇偶性的判断方法
    正弦型函数y=Asin(ωx+φ)和余弦型函数y=Acs(ωx+φ)不一定具备奇偶性.对于函数y=Asin(ωx+φ),当φ=kπ(k∈Z)时为奇函数,当φ=kπ+eq \f(π,2)(k∈Z)时为偶函数;对于函数y=Acs(ωx+φ),当φ=kπ(k∈Z)时为偶函数,当φ=kπ+eq \f(π,2)(k∈Z)时为奇函数.
    6、与正弦、余弦型函数有关的单调区间的求解技巧
    ①结合正弦、余弦函数的图象,熟记它们的单调区间.
    ②确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法:采用“换元”法整体代换,将ωx+φ看作一个整体,可令“z=ωx+φ”,即通过求y=Asin z的单调区间而求出函数的单调区间.若ω

    相关试卷

    4.5.3 函数模型的应用5种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册):

    这是一份4.5.3 函数模型的应用5种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册),文件包含453函数模型的应用5种常见考法归类原卷版docx、453函数模型的应用5种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    4.4 对数函数11种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册):

    这是一份4.4 对数函数11种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册),文件包含44对数函数11种常见考法归类原卷版docx、44对数函数11种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。

    4.2 指数函数10种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册):

    这是一份4.2 指数函数10种常见考法归类-2024-2025学年高一数学高频考点专题练(人教A版必修第一册),文件包含42指数函数10种常见考法归类原卷版docx、42指数函数10种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map