专题7.11 平面图形的认识(二)八类必考压轴题-2022-2023学年七年级数学下册举一反三系列(苏科版)
展开必考点1
平行线中求角度的综合
1.已知,AB∥CD,F、G分别为直线AB、CD上的点,E为平面内任意一点,连接EF、EG.
(1)如图(1),请直接写出∠AFE、∠CGE与∠FEG之间的数量关系.
(2)如图(2),过点E作EM⊥EF、EH⊥EG交直线AB上的点M、H,点N在EH上,过N作PQ∥EF,求证:∠HNQ=∠MEG.
(3)如图(3),在(2)的条件下,若∠ENQ=∠EMF,∠EGD=110°,求∠CQP的度数.
2.已知直线AB∥CD,点P,Q分别在直线AB,CD上.
(1)如图①,当点E在直线AB,CD之间时,连接PE,QE.探究∠PEQ与∠BPE+∠DQE之间的数量关系,并说明理由;
(2)如图②,在①的条件下,PF平分∠BPE,QF平分∠DQE,交点为F.求∠PFQ与∠BPE+∠DQE之间的数量关系,并说明理由;
(3)如图③,当点E在直线AB,CD的下方时,连接PE,QE.PF平分∠BPE,QH平分∠CQE,QH的反向延长线交PF于点F.若∠E=40°时,求∠F的度数.
3.已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠EGH=∠EFH.
(1)如图1,求证:EF∥GH;
(2)如图2,EN为∠BEF的角平分线,交GH于点P,连接FN,求证:∠N=∠HPN−∠NFH;
(3)如图3,在(2)的条件下,过点F作FM⊥GH于点M,作∠AGH的角平分线交CD于点Q,若FN平分∠DFM,且∠GQH比∠N的13多3°,求∠AEF的度数.
4.已知:直线AB∥CD,点M、N分别在直线AB、直线CD上,点E为平面内一点,
(1)如图1,请写出∠AME、∠E、∠ENC之间的数量关系,并给出证明;
(2)如图2,利用(1)的结论解决问题,若∠AME=30°,EF平分∠MEN,NP平分∠ENC,EQ∥NP,求∠FEQ的度数;
(3)如图3,点G为CD上一点,∠AMN=m∠EMN,∠GEK=m∠GEM, EH∥MN交AB于点H,请写出∠GEK,∠BMN,∠GEH之间的数量关系(用含m的式子表示),并给出证明.
5.已知:直线AB∥CD,点M,N分别在直线AB,CD上,点P是平面内一个动点,且满足∠MPN=90°.过点N作射线NQ,使得∠PNQ=∠PNC.
(1)如图1所示,当射线NQ与NM重合,∠QND=50°时,则∠AMP= ;
(2)如图2所示,当射线NQ与NM不重合,∠QND=α°时,求∠AMP的度数;(用含α的代数式表示)
(3)在点P运动的过程中,请直接写出∠QND与∠AMP之间的数量关系.
6.如图,AB∥CD,点P为AB上方一点,E在直线AB上.
(1)如图1,求证:∠P=∠PEB-∠C;
(2)如图2,点F为直线CD上一点,∠PEB、∠CFP的角平分线所在直线交于点Q,求∠P与∠Q的数量关系;
(3)如图3,N为AB、CD之间一点,且在∠CPE内部,∠EPN=n∠CPN、∠DCN=n∠PCN,当2∠CNP-∠PEA=180°恒成立时,n= .
7.如图:
(1)如图1,已知MN∥PQ,B在MN上,D在PQ上,点E在两平行线之间,求证:∠BED=∠PDE+∠MBE;
(2)如图2,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=110°.
①若∠ADQ=130°,求∠BED的度数;
②将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,如图3所示.若∠ADQ=n°,则∠BED的度数是 度(用关于n的代数式表示).
必考点2
平行线中的辅助线构造
1.先阅读再解答:
(1)如图1,AB∥CD,试说明:∠B+∠D=∠BED;
(2)已知:如图2,AB∥CD,求证:∠B+∠BED=360°;
(3)已知:如图3,AB∥CD,∠ABF=∠DCE.求证:∠BFE=∠FEC.
2.综合与实践
(1)问题情境:图1中,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.按小明的思路,易求得∠APC的度数为______;(直接写出答案)
(2)问题迁移:图2中,直线AB∥CD,P为平面内一点,连接PA、PD.若∠A=50°,∠D=150°,试求∠APD的度数;
(3)问题拓展:图3中,直线AB∥CD,则∠PAB、∠CDP、∠APD之间的数量关系为______.
3.如图1,小明和小亮在研究一个数学问题:
(1)已知:AB∥CD,AB和CD都不经过点P,探索∠P与∠A,∠C的数量关系.
小明是这样证明的:请填写理由
证明:过点P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C( )
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
(2)在图2中,AB∥CD,若∠A=120°,∠C=140°,则∠APC的度数为 ;
(3)在图3中,AB∥CD,若∠A=40°,∠C=70°,则∠APC的度数为 ;
(4)在图4中,AB∥CD,探索∠P与∠C,∠PAB的数量关系,并说明理由.
4.直线AB∥CE,BE—EC是一条折线段,BP平分∠ABE.
(1)如图1,若BP∥CE,求证:∠BEC+∠DCE=180°;
(2)CQ平分∠DCE,直线BP,CQ交于点F.
①如图2,写出∠BEC和∠BFC的数量关系,并证明;
②当点E在直线AB,CD之间时,若∠BEC=40°,直接写出∠BFC的大小.
5.课题学习:平行线的“等角转化”功能.
(1)阅读理解:如图1,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程.
解:过点A作ED∥BC,
∴ ∠B= ,∠C ,
∵ ∠EAB+∠BAC+∠DAC=180°,
∴ ∠B+∠BAC+∠C=180°.
解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.
(2)方法运用:如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数;
(3)深化拓展:已知AB∥CD,点C在点D的右侧,∠ADC=50°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在直线AB与CD之间.
①如图3,点B在点A的左侧,若∠ABC=36°,求∠BED的度数.
②如图4,点B在点A的右侧,且AB
平行线中利用方程思想求角度
1.(1)如图1,点E、F分别在直线AB、CD上,点P为平面内AB、CD间一点,若∠EPF=∠PEB+∠PFD,证明:AB∥CD;
(2)如图2,AB∥CD,点E在直线AB上,点F、G分别在直线CD上,GP平分∠EGF,∠PEG=∠PFG,请探究∠EPF、∠PEG、∠DGE之间的数量关系,并说明理由;
(3)如图3,AB∥CD,∠EPF=120°,∠PEG=n∠BEG,∠PFK=n∠CFK.直线MN交FK、EG分别于点M、N,若∠FMN−∠ENM=25°,求n的值.
2.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.
(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数.
(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度数.
(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=120°,求∠AME的度数.
3.如图,直线AB、CD被EF所截,直线EF分别交AB、CD于G、H两点,∠AGE=∠FHD.
(1)如图1,求证:AB∥CD;
(2)如图2,HQ、GN分别为夹在AB、CD中的两条直线,∠AGN=∠QHD,求证:GN∥QH;
(3)如图3,在(2)的条件下,连接HN,M为AB上一点,连接MN,V为AB上一点,连接VN,∠GNV=36°,NP平分∠VNM交AB于点K,∠HNK=2∠GNK,VP∥MN,∠NHD=∠VNK+6°,∠QHN=2∠KVN,求∠VPN的度数.
4.问题探究:
如图①,已知AB∥CD,我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?
张山同学:如图②,过点E作EF∥AB,把∠BED分成∠BEF与∠DEF的和,然后分别证明∠BEF=∠B,∠DEF=∠D.
李思同学:如图③,过点B作BF∥DE,则∠E=∠EBF,再证明∠ABF=∠D.
问题解答:
(1)请按张山同学的思路,写出证明过程;
(2)请按李思同学的思路,写出证明过程;
问题迁移:
(3)如图④,已知AB∥CD,EF平分∠AEC,FD平分∠EDC.若∠CED=3∠F,求∠F的度数.
5.如图,已知AB∥CD,点E在直线AB,CD之间.
(1)求证:∠AEC=∠BAE+∠ECD;
(2)若AH平分∠BAE,将线段CE沿CD平移至FG.
①如图2,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;
②如图3,若HF平分∠CFG,请直接写出∠AHF与∠AEC的数量关系.
6.已知:AB∥CD,点P、Q分别在AB、CD上,在两直线间取一点E.
(1)如图1,求证:∠E=∠APE+∠CQE;
(2)将线段EQ沿DC平移至FG,∠CGF的平分线和∠APE的平分线交于直线AB、CD内部一点H.
①如图2,若∠E=90°,求∠H的度数;
②如图3,若点I在直线AB、CD内部,且PI平分∠BPE,连接HI,若∠I−∠H=m°,∠E=n°,请直接写出m与n的数量关系,不必证明.
必考点4
平行线中利用分类讨论思想求角度
1.问题情境:如图 1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:如图 2,过 P 作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°
问题迁移:
(1)如图 3,AD∥BC,点 P 在射线 OM 上运动,当点 P 在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,∠CPD、∠α、∠β之间有何数量关系?请说明理由
(2)在(1)的条件下,如果点P在A、B两点外侧运动时, 点 P 与 点A、B、O三点不重合,请你直接写出∠CPD、∠α,∠β 间的数量关系.
2.已知AB∥CD.
(1)如图1,若∠ABE=120°,∠BED=135°,则∠EDK=______.
(2)如图2,EF⊥BE于点E,∠HBE、∠KDE的角平分线交于点P,GE平分∠DEF,若∠P比∠GEF的5倍还多5°,求∠GEF的度数.
(3)如图3,在(1)的条件下,在同一平面内的点M、N满足:∠MBH=12∠MBE,∠NDK=12∠NDE,直线MB与直线ND交于点Q,直接写出∠BQD的大小______.
3.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.
(1)若点P,F,G都在点E的右侧.
①求∠PCG的度数;
②若∠EGC−∠ECG=40°,求∠CPQ的度数.
(2)在点P的运动过程中,是否存在这样的情形,使∠EGC∠EFC=32?若存在,求出∠CPQ的度数;若不存在,请说明理由.
4.如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.
(1)试说明:∠BAG=∠BGA;
(2)如图2,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG−∠F=45°,求证:CF平分∠BCD;
(3)如图3,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求∠ABM∠GBM的值.
必考点5
平行线中的动态问题
1.如图,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM交CD于点M,AB∥CD,且∠FEM=∠FME.
(1)当∠AEF=70°时,∠FME=__________°.
(2)判断EM是否平分∠AEF,并说明理由.
(3)如图,点G是射线FD上一动点(不与点F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EGF=α.探究当点G在运动过程中,∠MHN−∠FEH和α之间有怎样的数量关系?请写出你的猜想,并加以证明.
2.如图1,一块直尺和一块含30°的直角三角板如图放置,其中直尺和直角三角板的斜边平行,我们可以抽象出如图2的数学模型:MN∥AB,∠BAC=60°,∠C=90°,MN分别交AC、BC于点E、F、∠BAC的角平分线AD交MN于点D,H为线段AB上一动点(不与A、B重合),连接FH交AD于点K.
(1)当∠BFH=12∠BFN时,求∠AKF.
(2)H在线段AB上任意移动时,求∠AKF,∠HAK,∠DFH之间的关系.
(3)在(1)的条件下,将△DKF绕着点F以每秒5°的速度逆时针旋转,旋转时间为t0≤t≤36,则在旋转过程中,当△DKF的其中一边与△CEF的某一边平行时,直接写出此时t的值.
3.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.
(1)填空:∠BAN=______°;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为______秒.
4.长江汛期即将来临,为了便于夜间查看江水及两岸河堤的情况,防汛指挥部在一危险地带两岸各安置了一探照灯(如图1),假定这一带长江两岸河堤是平行的,即PQ∥MN,连结AB,且∠ABN=45°.灯A射线自AQ顺时针旋转至AP便立即回转,灯B射线自BM顺时针旋转至BN便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是1度/秒,灯B转动的速度是3度/秒.
(1)若两灯同时转动,在灯B射线第一次转到BN之前,两灯射出的光线交于点C.
①如图1,当两灯光线同时转动50秒时,求∠ABC的度数.
②如图2,过C作CD⊥BC交PQ于点D,则在转动过程中,求∠ABC与∠ACD的比值,并说明理由.
(2)若灯A射线先转动30秒,灯B射线才开始转动,在灯A射线第一次转到AP之前,B灯转动几秒,两灯的光线互相平行?
必考点6
构成三角形的条件
1.(2022秋·广东珠海·八年级珠海市斗门区实验中学校考期中)如图,已知P是△ABC内任一点, AB=12,BC=10,AC=6,则 PA+PB+PC的值一定大于( )
A.14B.15C.16D.28
2.(2022秋·浙江杭州·八年级期末)设a,b,c表示一个三角形三边的长,且他们都是自然数,其中a≤b≤c,若b=2020,则满足此条件的三角形共有____个.
3.(2022秋·黑龙江齐齐哈尔·八年级校考期中)三角形的周长小于13,且各边长为互不相等的整数,则这样的三角形共有________个.
4.(2022秋·陕西西安·七年级西安益新中学校考期中)不能构成三角形的三条整数长度的线段的长度和的最小值为1+1+2=4;若四条整数长度的线段中,任意三条不能构成三角形,则该四条线段的长度和的最小值为1+1+2+3=7;……,依此规律,若八条整数长度的线段中,任意三条不能构成三角形,则该八条线段的长度和的最小值为________.
5.(2022秋·陕西西安·七年级西安益新中学校考期中)把一条长为18米的细绳围成一个三角形,其中两边长分别为x米和4米.
(1)求x的取值范围;
(2)若围成的三角形是等腰三角形,求x的值.
必考点7
三角形中线与面积关系探究
1.(2022秋·新疆吐鲁番·八年级统考期末)设△ABC的面积为a,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……, 依此类推,若S5=311则a的值为( )
A.1B.2C.6D.3
2.(2022春·江苏无锡·七年级校联考期中)如图,在△ABC中,AB=5,AC=6,CD=4BD,点E是AC的中点,BE、AD交于点F,则四边形DCEF的面积的最大值是______.
3.(2022春·江苏无锡·七年级江苏省锡山高级中学实验学校校考期中)如图,点C为直线AB外一动点,AB=5,连接CA、CB,点D、E分别是AB、BC的中点,连接AE、CD交于点F,当四边形BEFD的面积为5时,线段AC的长度的最小值为___.
4.(2022春·江苏无锡·七年级无锡市侨谊实验中学校考期中)如图,在△ABC中,点D,点E分别是AC和AB上的点,且满足AE=2BE,CD=3AD,过点A的直线l平行BC,射线BD交CE于点O,交直线l于点F.若△CDF的面积为12,则四边形AEOD的面积为____________.
5.(2022春·山东青岛·七年级山东省青岛第二十六中学校考期中)如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2021,最少经过多少次操作 ___________
6.(2022秋·陕西西安·七年级西安益新中学校考期中)探索:在图1至图3中,已知△ABC的面积为a,
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=______.(用含a的代数式表示)
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=______.(用含a的代数式表示)
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图)若阴影部分的面积为S3,则S3=______.(用含a的代数式表示)
(4)发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的______倍.
(5)应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种黄花,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC的面积是10平方米,请你运用上述结论求出:
①种紫花的区域的面积;
②种蓝花的区域的面积.
7.(2022春·黑龙江哈尔滨·七年级哈尔滨工业大学附属中学校校考期中)在一个三角形中,如果一个角是另一个角的2倍,这样的三角形我们称之为“智慧三角形”.如,三个内角分别为120°, 40°, 20°的三角形是“智慧三角形”.
(1)如图1,在△ABC中,∠B=∠C=45°,在BC上取一点D,连接AD,∠CAD=∠ADC.求证:△ABD是“智慧三角形”.
(2)如图2,在△ABC中,在AB、AC、BC上分别取点F、点E、点D,连接DE、DF,∠DEC=∠EDC,∠FDB=∠BFD,∠EDF=45°.求证:AB⊥AC.
(3)如图3,在(2)的条件下,△ABC的面积为25,BD=25BC,延长DE、BA交于点G,且E为DG的中点,连接BE、AD交于点I.求四边形EIDC的面积.
必考点8
多边形截角后的内角和或外角问题
1.(2022春·江苏扬州·七年级统考期中)从如图的五边形ABCDE纸片中减去一个三角形,剩余部分的多边形的内角和和是__________
2.(2022秋·江西南昌·八年级南昌二中校考期中)(1)如图1所示,∠A+∠B+∠C+∠D+∠E+∠F=_________∘;
(2)如果把图1称为二环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为二环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H,则二环四边形的内角和为__________∘;二环五边形的内角和为__________∘;二环n边形的内角和为_________∘.
3.(2022春·江西南昌·七年级南昌市外国语学校校考期中)一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,求原多边形的边数.
4.(2022秋·新疆吐鲁番·八年级统考期末)阅读下题及解题过程.
如图(1),我们知道四边形的内角和为4−2×180∘=360∘,现在将一张四边形的纸剪掉一个角后,剩余纸所有内角的和是多少?
如图(2),剩余纸为五边形,所以剩余纸所有内角的和为5−2×180∘=540∘.
上面的解答过程是否正确?若正确,说出你的判断根据;若不正确,请说明原因,并写出你认为正确的结论.
5.(2022春·四川遂宁·七年级统考期末)如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=470°.
(1)求六边形ABCDEF的内角和;
(2)求∠BGD的度数.
6.(2022秋·新疆吐鲁番·八年级统考期末)如图1,四边形MNBD为一张长方形纸片.
(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD=__________°.
(2)如图3,将长方形纸片剪三刀,剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=__________°.
(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=___________°.
(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出n+1个角,那么这n+1个角的和是____________°.
初中数学苏科版八年级下册10.1 分式复习练习题: 这是一份初中数学苏科版八年级下册<a href="/sx/tb_c17224_t7/?tag_id=28" target="_blank">10.1 分式复习练习题</a>,共45页。
苏科版八年级下册第12章 二次根式12.1 二次根式当堂检测题: 这是一份苏科版八年级下册<a href="/sx/tb_c95570_t7/?tag_id=28" target="_blank">第12章 二次根式12.1 二次根式当堂检测题</a>,文件包含专题126二次根式全章五类必考压轴题苏科版原卷版docx、专题126二次根式全章五类必考压轴题苏科版解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
数学八年级下册11.1 反比例函数随堂练习题: 这是一份数学八年级下册<a href="/sx/tb_c17228_t7/?tag_id=28" target="_blank">11.1 反比例函数随堂练习题</a>,文件包含专题115反比例函数全章七类必考压轴题苏科版原卷版docx、专题115反比例函数全章七类必考压轴题苏科版解析版docx等2份试卷配套教学资源,其中试卷共119页, 欢迎下载使用。