河南省新乡市辉县市2023-2024学年九年级上学期期末数学试题(原卷+解析)
展开1. 下列二次根式中,与是同类二次根式的是( )
A. B. C. D.
2. 若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A. k<5B. k<5,且k≠1C. k≤5,且k≠1D. k>5
3. 在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( )
A. B. C. D.
4. 如图,在长为,宽为的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是,则小路的宽是( )
A. B. C. 或D.
5. 下列事件中,属于随机事件的是( )
A. 抛出的篮球会落下B. 从装有红球、白球的袋中摸出黑球
C. 14人中至少有2人是同月出生D. 经过有交通信号灯的路口,遇到绿灯
6. 已知二次函数,下列说法正确的是( )
A. 对称轴为B. 顶点坐标为
C. 当时y随x的增大而减小D. 图象向右平移1个单位长度得到
7. 《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.《九章算术》中记载:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”大意:有一形状是矩形的门,它的高比宽多尺寸,它的对角线长丈,问它的高与宽各是多少?利用方程思想,设矩形门宽为尺,则依题意所列方程为丈尺,尺寸( )
A. B.
C. D.
8. 如图,在中,,则( )
A. 1B. 2C. D. 4
9. 如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点.若,,则( )
A. B. C. D.
10. 如图,在直角坐标系中,每个网格小正方形边长均为1个单位长度,以点P为位似中心作正方形,正方形,按此规律作下去,所作正方形的顶点均在格点上,其中正方形的顶点坐标分别为,,则顶点的坐标为( )
A. B. C. D.
二、填空题:本题共5小题,每小题3分,共15分.
11. 若代数式有意义,则实数的取值范围是______.
12. 已知a、b是方程的两根,则___________.
13. 在△ABC中,,AC=2,AD是BC边上的高,∠ACD=45°,则BC的长为 _____.
14. 如图,在平行四边形ABCD中,∠BAC=90°,BC=4,∠BCA=30°,E为AD上一点,以点A为圆心,AE长为半径画弧,交BC于点F,若BF=AB,则图中阴影部分的面积为_________(结果保留��).
15. 如图,在矩形中,,动点在矩形的边上沿运动.当点不与点重合时,将沿对折,得到,连接,则在点的运动过程中,线段的最小值为__________.
三、解答题:本题共8小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16. (1)计算:;
(2)先化简,再求值:,其中.
17. 已知:关于x的一元二次方程.
(1)判断方程的根的情况;
(2)若为等腰三角形,,另外两条边长是该方程的根,求的周长.
18. 为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:
A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母,,,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.
(1)求小亮从中随机抽到卡片的概率;
(2)请用画树状图或列表的方法,求两人都抽到卡片的概率.
19. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡长16米,在地面点处测得风力发电机塔杆顶端点的仰角为,利用无人机在点的正上方53米的点处测得点的俯角为,求该风力发电机塔杆的高度.(参考数据:,,)
20. 如图,在平面直角坐标系中,的顶点均在格点(网格线的交点)上,已知.
(1)以点O为位似中心,在第一象限画出的位似图形,使与的相似比为.(A,B,C的对应点分别为)
(2)在(1)的条件下,写出点的坐标并求出的面积.
21. 一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.
(1)求抛物线函数表达式,并通过计算判断球能否射进球门(忽略其他因素).
(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?
22. 垃圾分类作为一个公共管理的综合系统工程,需要社会各个方面共同发力.洛阳市某超市计划定制一款家用分类垃圾桶,独家经销,生产厂家给出如下定制方案:不收设计费,定制不超过套时.每套费用元;超过套后,超出的部分折优惠.已知该超市定制这款垃圾桶的平均费用为元套
(1)该超市定制了这款垃圾桶多少套?
(2)超市经过市场调研发现:当此款垃圾桶售价定为/套时,平均每天可售出套;售价每降低元.平均每天可多售出套,售价下降多少元时.可使该超市平均每天销售此款垃圾桶利润最大?
23. 问题呈现】
和都是直角三角形,,连接,,探究,的位置关系.
(1)如图1,当时,直接写出,的位置关系:____________;
(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
【拓展应用】
(3)当时,将绕点C旋转,使三点恰好在同一直线上,求长.
河南省新乡市辉县市2023-2024学年九年级上学期1月期末数学试题: 这是一份河南省新乡市辉县市2023-2024学年九年级上学期1月期末数学试题,共5页。
河南省新乡市辉县市2023-2024学年九年级上学期1月期末数学试题: 这是一份河南省新乡市辉县市2023-2024学年九年级上学期1月期末数学试题,共4页。
河南省新乡市辉县市2022-2023学年九年级上学期期末数学试题: 这是一份河南省新乡市辉县市2022-2023学年九年级上学期期末数学试题,共7页。试卷主要包含了本试卷分试题卷和答题卡两部分等内容,欢迎下载使用。