2023-2024学年北京市朝阳区高三一模数学试题
展开
这是一份2023-2024学年北京市朝阳区高三一模数学试题,文件包含北京市朝阳区高三一模数学试题原卷版docx、北京市朝阳区高三一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.
1 已知集合,集合,则( )
A B. C. D.
2. 直线被圆截得的弦长为( )
A 1B. C. 2D.
3. 已知平面向量,满足,,且与夹角为,则( )
A. B. C. D. 3
4. 设,若,,,则( )
A. B. C. D.
5. 已知函数,若,则实数的值为( )
A B. C. 1D. 2
6. 已知,则“”是“”的( )
A. 充分而不必要条件B. 必要而不充分条件
C. 充分必要条件D. 既不充分也不必要条件
7. 已知三棱锥,现有质点Q从A点出发沿棱移动,规定质点Q从一个顶点沿棱移动到另一个顶点为1次移动,则该质点经过3次移动后返回到A点的不同路径的种数为( )
A. 3B. 6C. 9D. 12
8. 已知数列,若存在一个正整数使得对任意,都有,则称为数列的周期.若四个数列分别满足:
①,;
②,;
③,,;
④,.
则上述数列中,8为其周期的个数是( )
A. 1B. 2C. 3D. 4
9. 如图1,北京2022年冬奥会比赛场地之一首钢滑雪大跳台与电力厂的冷却塔交相辉映,实现了它与老工业遗址的有效融合.如图2,冷却塔的外形是双曲线的一部分绕其虚轴旋转所成的曲面.它的最小半径为,上口半径为,下口半径为,高为.在冷却塔的轴截面所在平面建立如图3所示的平面直角坐标系,设,,,,则双曲线的方程近似为( )
(参考数据:,,)
A. B. C. D.
10. 在通用技术教室里有一个三棱锥木块如图所示,,,两两垂直,(单位:),小明同学计划通过侧面内任意一点将木块锯开,使截面平行于直线和,则该截面面积(单位:)的最大值是( )
A. B. C. D.
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡上.
11. 计算________.
12. 已知数列是首项为3,公比为的等比数列,是其前项的和,若,则___________;___________.
13. 已知直线和是曲线的相邻的两条对称轴,则满足条件的一个的值是___________.
14. 某地进行老旧小区改造,有半径为60米,圆心角为的一块扇形空置地(如图),现欲从中规划出一块三角形绿地,其中在上,,垂足为,,垂足为,设,则___________(用表示);当在上运动时,这块三角形绿地的最大面积是___________.
15. 在平面直线坐标系中,设抛物线:的焦点为,直线:与抛物线交于点,且点在轴上方,过点作抛物线的切线与抛物线的准线交于点,与轴交于点.给出下列四个结论:
① 的面积是;
②点的坐标是;
③在轴上存在点使;
④以为直径的圆与轴的负半轴交于点,则.
其中所有正确结论的序号是___________.
三、解答题:本大题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.
16. 在中,.
(1)求;
(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使存在且唯一确定,求的面积.
条件①:;条件②:;条件③:.
注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别作答,按第一个解答计分.
17. 某学校在寒假期间安排了“垃圾分类知识普及实践活动”.为了解学生的学习成果,该校从全校学生中随机抽取了50名学生作为样本进行测试,记录他们的成绩,测试卷满分100分,将数据分成6组:,,,,,,并整理得到如下频率分布直方图:
(1)若全校学生参加同样的测试,试估计全校学生的平均成绩(每组成绩用中间值代替);
(2)在样本中,从其成绩在80分及以上的学生中随机抽取3人,用表示其成绩在中的人数,求的分布列及数学期望;
(3)在(2)抽取的3人中,用表示其成绩在的人数,试判断方差与的大小.(直接写结果)
18. 如图1,在四边形中,,,,,,分别是,上的点,,,,.将沿折起到的位置,得到五棱锥,如图2.
(1)求证:平面;
(2)若平面平面,
(i)求二面角的余弦值;
(ii)对线段上任意一点,求证:直线与平面相交.
19. 已知,.
(1)若曲线在点处的切线与轴重合,求的值;
(2)若函数在区间上存在极值,求的取值范围;
(3)设,在(2)的条件下,试判断函数在区间上的单调性,并说明理由.
20. 已知椭圆:的一个焦点为,且过点.
(1)求椭圆的方程和离心率;
(2)过点且与轴不重合的直线与椭圆交于,两点,与直线交于点,点满足轴,轴,试求直线的斜率与直线的斜率的比值.
21. 对非空数集,,定义与的和集.对任意有限集,记为集合中元素的个数.
(1)若集合,,写出集合与;
(2)若集合满足,,且,求证:数列,,,是等差数列;
(3)设集合满足,,且,集合(,),求证:存在集合满足且.
相关试卷
这是一份2023-2024学年北京市西城区高三一模数学试题,文件包含北京市西城区高三一模数学试题原卷版docx、北京市西城区高三一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份2023届北京市朝阳区高三一模数学试题查漏补缺练习(一)含解析,共23页。试卷主要包含了单选题等内容,欢迎下载使用。
这是一份2023年北京市朝阳区高三一模考试数学试卷(含答案解析),共12页。试卷主要包含了 若a>0>b,则, 已知点A−1,0,B1,0等内容,欢迎下载使用。