还剩8页未读,
继续阅读
成套系列资料,整套一键下载
教学计划(教学计划)-2023-2024学年五年级下册数学苏教版
展开
2023~2024年五年级数学下册教学计划 一、教材分析(一)教学内容分析本册教材具体单元安排为:简易方程;折线统计图;因数和倍数;分数的意义和性质;分数加法和减法;圆;解决问题的策略;整理与复习。另外,还有 2次综合实践活动:蒜叶的生长和球的反弹高度;1次探索规律的专题活动:和与积的奇偶性。 1.数与代数领域“数与代数”领域的内容是本册教材的主要内容,共安排5个单元,包括“简易方程”、“因数与倍数”、“分数的意义和性质”、“分数加法和减法”、“解决问题的策略”。 (1)“简易方程”:本单元内容是由原五年级上册和六年级上册的方程内容整合而成。修订后的教材有几下几点值得注意的变化。一是以应用等式性质解方程为主,同时适当启发学生依据方程特点灵活进行思考。二是增设列方程解稍复杂相遇问题的例题。三是引导学生在解决问题的过程中主动探求不同方程的解法,逐步提高解方程的能力。(2)“因数与倍数”: 修订后,把认识公倍数和最小公倍数和原四年级下册的内容集中在一起,还在教学质数、合数之后安排把一个合数分解质因数的内容。这主要是为了帮助学生进一步拓宽知识视野,加深对质数、合数及其相互关系的理解。本单元教材分三段教学。第一段,认识因数和倍数,学习在1—100的自然数中有序地找出10以内某个数的所有倍数,以及100以内某个数的所有因数;探索2、5和3的倍数的特征,学习判断一个数是不是2、5或3的倍数,同时认识奇数和偶数。第二段,认识质数、合数和质因数,学习把一个合数分解质因数。第三段,认识公因数和最大公因数,探索求两个数的最大公因数的方法;认识公倍数和最小公倍数,探索求两个数的最小公倍数的方法。最后安排全单元的整理与练习。这部分内容不仅知识点较多,而且存在很多容易混淆的概念和方法,历来是小学数学的教学难点之一。(3)“分数的意义和性质”:主要由两部分组成,第一部分侧重引导学生探索并理解分数的意义,具体包括分数的基本含义、分数与除法的关系、求一个数是另一个数的几分之几、真分数与假分数、把假分数化成整数或带分数、分数与小数的互化等;第二部分侧重引导学生探索并掌握分数的基本性质,具体包括分数的基本性质、约分、 通分和分数的大小比较等。(4)“分数加法和减法”:本单元内容分两段安排。第一段,异分母分数的加、减法计算,异分母分数加减法是分数四则运算的重要内容,而且在探索分数加减法计算方法的过程中蕴藏着一些重要的数学原理和数学思想方法,经历这一过程有助于学生加深对加减法运算的理解,提升数学思维的水平。第二段,分数加减混合运算。在教学分数加减混合运算时,还在练习题中,通过比较,引导学生自主领会整数加法运算律和减法性质同样适用于分数的加、减法运算,并尝试进行相应的简便运算。考虑到学生在三年级就已经学习过简单的同分母分数的加减法,在本册教材的第四单元也已学习过分数的意义和性质,所以本单元教材十分注意为学生留出充分的自主探索的空间。(5)“解决问题的策略”: 删除用 “倒推“ 策略解决问题,教学用“转化”的策略解决问题。转化是一种重要而又最为常见的解决问题的策略。学生在此前的各类数学活动中曾经多次运用这一策略解决问题,具有较为丰富的经验和体会。教材安排两个例题,引导学生从平面图形以及与计算的角度分别体会转化策略的应用过程和特点,逐步积累用转化策略解决问题的经验,增强主动应用策略的自觉性。 2.图形与几何领域这部分安排了一个单元,即第六单元“圆”。这部分内容分三段安排。第一段,认识圆的基本特征以及圆的圆心、半径和直径,学会用圆规画圆,初步认识扇形,初步理解扇形与所在圆的关系;第二段,探索并掌握圆的周长公式,了解圆周率的含义,应用圆的周长公式解决一些实际问题;第三段,探索并掌握圆的面积公式以及简单组合图形的面积计算方法,应用圆的面积公式解决一些实际问题。这部分内容在图形与几何领域具有十分重要的地位,这是从直线图形到曲线图形,分析和研究问题的方法本身也有了明显变化,这种变化将对学生的数学观念产生一定的影响。 3.统计与概率领域这部分安排了1个单元,即第二单元“折线统计图”。修订后,把单式折线图与复式折线图整合后集中安排在本册进行教学。全单元编排两道例题,例1用折线统计图表示一组数据,例2用复式折线统计图同时表示两组数据。一个单元中同时教学单式与复式统计图时考虑到学生已具备单式条形图与复式条形图的基础。因为只有了解折线统计图表示数据的基本方法和特点才能理解它所蕴含的各种信息;只有充分理解折线统计图所蕴含的各种信息才能展开进一步的分析和思考,进而解决相应的问题。 4.综合与实践领域本册教材共安排了2次活动,包括:“蒜叶的生长”和“球的反弹高度”。《蒜叶的生长》是结合 “折线统计图” 的认识重新设计的,其侧重引导学生围绕蒜叶及其根须的生长情况,经历数据的收集、整理、描述和分析过程,进一步感受数据对于发现和提出问题、分析和解决问题的意义。《球的反弹高度》由原实验教材中同名的实践与综合应用改造而成,其一方面强化了提出问题、实验探究、获得结论的活动线索,引导学生在问题的引领下积极参与活动过程,主动开展实验探究;另一方面则突出了 “回顾反思”的活动环节,着力引导学生从不同层面和角度总结活动过程中的收获和体会,帮助他们积累活动经验、提升认识水平。第八单元是本册教材的“整理与复习”。此外,修订后的教材删除了《找规律》单元内容,增设探索“积与积的奇偶性”探索规律的专题活动。教材侧重引导学生通过举例、观察、猜想、验证、归纳、反思等活动,探素并发现几个数相加的和或几个数相乘的积的奇偶性规律,帮助他们经历由具体到抽象、由特殊到一般的归纳过程,感受基本数学思想,培养探索学习的兴趣和能力。这样的活动,既有利于学生从新的角度丰富对奇数和偶数的认识,提升数学思考的水平;也有利于他们感受数学规律的多样性和趣味性,感受数学知识之间的广泛联系。(二)教学目标1.知识技能方面 (1)使学生经历将实际问题抽象成式与方程的过程,会解一些简易方程,会列方程解答相关实际问题,初步体会方程的意义和思想;经历倍数和因数、奇数和偶数、质数和合数的认识过程,学会求两个数的最大公因数和最小公倍数,加深对自然数的特征和相互关系的理解;经历探索和理解分数意义、性质以及加、减法计算方法的过程,体会数概念的进一步扩展,丰富对运算意义的理解,形成必要的计算技能。(2)通过观察、操作、思考、交流等活动,认识圆的特征,探索并掌握远的周长和面积公式,进一步积累图形与几何的学习经验,获得相关的基础知识和基本技能。(3)联系统计活动过程认识折线统计图,初步掌握用折线统计图描述数据的方法和特点,能按要求完成相关的折线统计图,能对折线统计图表示的数据及其变化情况进行简单的分析。2.数学思考方面 (1)在认识等式和方程,探索等式的性质,解方程,以及列方程解决实际问题的过程中,发展抽象思维,培养符号意识,感受方程思想的意义和价值。(2)在认识因数和倍数、奇数和偶数、质数和合数、公因数和公倍数等活动过程中,进一步感知自然数的基本特征,加深对自然数相互关系的理解,增强数感。(3)在找一个数的因数和倍数、求两个数的最大公因数和最小公倍数等活动过程中,进一步体会有序思考的意义和价值,培养思维的条理性和严密性。(4)在认识分数的意义、探索分数与除法的关系以及分数加、减法计算方法的过程中,主动进行观察和操作、比较和分析、抽象和概括,学会合乎逻辑地表达自己的思考过程,培养初步的演绎推理能力。(5)在探索2、5和3的倍数的特征、分数的基本性质以及和与积的奇偶性规律等活动中,经历由具体到抽象、有特殊到一般的思考过程,发展初步的合情推理能力。(6)在认识圆的特征、探索圆的周长和面积公式的过程中,进一步丰富对现实空间和平面图形的认识,感受不同平面图形的相互关联,发展空间观念。(7)在收集和整理数据,用折线统计图描述数据,以及对统计结果进行分析和解释的过程中,进一步发展数据分析观念。3.解决问题方面 (1)联系分数的意义,方程的特点,最大公因数和最小公倍数的求法,分数加、减法的计算,以及圆的周长和面积等数学知识和方法,尝试从数量的多少及其关系,物体的形状及其变化等角度,提出和发现问题,分析并解决问题,进一步增强数学应用意识,锻炼时实践能力。(2)在列方程解决相关实际问题的过程中,初步掌握列方程解决问题的基本思路和方法,体会其价值和特点。(3)在基于数据作出判断和简单预测,以及应用转化策略解决相关实际问题等活动中,进一步体会数学知识和方法的内在关联,增强从不同角度、用不同方法解决问题的意识,培养根据实际问题的特点选择相应策略的能力。(4)在分析数量间的相互关系,推导圆的周长和面积公式,探索最大公因数和最小公倍数的求法,归纳分数基本性质等活动中,经历与他人合作交流的过程,学会在交流中不断完善自身的思考,进一步增强合作交流的意识。(5)在探索计算方法、检查计算结果、发现数学规律,以及应用所学知识解决实际问题的过程中,有条理地表达思考的大致过程和结果,学会在表达前整理、在倾听后总结,进一步增强主动评价和反思的意识。4.情感态度方面(1)在认识方程、圆、因数和倍数、分数,探索方程的解法,圆的周长和面积公式,最大公因数和最小公倍数的求法,分数加、减法的计算方法,以及基于数据获得不同结论、应用所学知识解决问题的过程中,感受数学学习的多样性和趣味性,增强增强参与数学活动的主动性和积极性,进一步提高对数学学习的兴趣。(2)在探索2、5和3的倍数的特征,分数的基本性质,和与积的奇偶性规律,列方程解决实际问题,用转化的策略解决问题,求组合图形的面积等活动中,经历克服困难、发现规律、获得结论的过程,感受自己在数学知识和方法等方面的收获和进步,体验成功的乐趣,进一步增强学好数学的信心。(3)在找一个数的因数和倍数,确定两个数的最大公因数和最小公倍数,用分数描述现实生活中的数量及其关系,用方程表示数量间的相等关系等活动中,体会数学思考的条理性和严谨性,感受数学方法的多样性和灵活性,初步了解数学的特点和价值,不断增强学数学、用数学的自觉性。(4)通过阅读“你知道吗”中的内容,参与实际调查,探索球的反弹高度与下落高度关系等活动,进一步了解相关数学知识的背景,体会数学对人类历史发展的作用,逐步养成乐于动手、勤于思考的习惯以及认真严谨、实事求是的品质。 二、教学建议(一)认真领会新教材的编写意图。教材在安排教学内容时,既注意数学知识发生、发展的逻辑顺序,更关注小学高年级学生的学习心理和认知发展的阶段性特点,努力实现这两者之间的有机结合。1.在列方程解决实际问题的过程中逐步积累解方程的经验,提高解方程的能力。2. 在相同的现实背景中认识和应用折线统计图。3.以整数乘、除法为基础,合乎逻辑地展开因数和倍数等知识的教学。4.进一步突出“分数与除法的关系” 在分数概念拓展过程中的地位和作用。5. 把对圆的特征的感悟贯穿于认识圆和扇形、探索圆的周长和面积公式的全过程。6. 联系学生已有的知识经验,教学用转化的策略解决问题。(二)本册教材各单元的教学建议1.《简易方程》单元(1)从等式到方程逐步建构新的数学知识。借助天平感受等式的含义。教学方程的意义,从形式上认识方程。用方程表示现实情境中的相等关系,深入体会方程的意义。(2)利用等式的性质解方程。在直观情境中,按“形象感受——抽象概括”的线索教学等式的性质。应用等式的性质解方程。逐渐掌握解方程的方法并形成相应的技能。(3)精心设计练习题,加强对简易方程的认识与掌握。在直观情境中加强对等式性质的体验。通过检验,体验方程的解。看图列方程并解方程,为后面列方程解决实际问题做铺垫。(4)列方程解决稍难的一步计算实际问题。教学方程意义的时候,用方程表示简单现象里的等量关系。教学解方程的时候,渗透列方程解决问题的思想。例7及其“练一练”主要解决逆叙的相差关系和倍数关系的问题。检验答案是否正确,反思解决问题的过程与方法,是教学列方程解决实际问题不可忽视的环节。(5)解稍复杂方程的策略——转化成简单的方程。从各个方程的特点出发,使用不同的化简方法。各道例题采用不同的教学思路,鼓励学生继续解转换后的方程。适量安排解方程的练习。(6)列方程解决较复杂实际问题的关键——找到等量关系。灵活开展寻找等量关系的思维活动。加强写出含有字母式子的练习,进一步把握数量关系,会列方程解决实际问题打基础。列方程解答有些变化的问题,拓展对等量关系的认识。2.《折线统计图》单元(1)观察并体会但是折线统计图表达数据的方式与方法。(2)根据数据完成复式折线统计图,体会特点。(3)在有意义的练习中体验折线统计图的现实应用。3.《因数和倍数》单元(1)教学因数与倍数的关系,探索找因素与倍数的方法。在拼长方形的活动中得出乘法算式,利用乘法算式介绍因数与倍数的概念。在因数和倍数概念的基础上,探索求一个数的因数与倍数的方法。(2)在“百数表”里找5的倍数、2的倍数、3的倍数,认识特征。5的倍数的特征比2的倍数的特征更为简单,例4由易到难,先教学5的倍数的特征,再教学2的倍数的特征。发现3的倍数的特征比较难,给予学生较多点拨与帮助。(3)通过写因数、比因数个数等活动,建立质数和合数的概念。(4)在认识质数与合数的基础上教学分解质因数。联系实例教学质因数的概念。分解质因数是应用质因数概念的推理过程。(5)在铺图形的活动中教学公因数、公倍数的意义,探索求法。公因数和公倍数都从铺图形的活动中引出。运用数学概念,探索找两个数的公因数与公倍数的方法。4.《分数的意义和性质》单元(1)概括已有的关于分数的感性认识,建立单位“1”的概念。(2)通过操作感受分数与除法的关系,发展对分数的认识。(3)用分数表示两个同类数量的倍比关系,充实分数意义。(4)以分数单位为新知识的生长点,教学真分数和假分数。(5)利用假分数可以化成整数或者带分数,进一步认识假分数。(6)优化分数与小数相互改写的教学。(7)精心安排教学素材,发现并理解分数的基本性质。(8)应用分数的基本性质把分数等值改写,教学约分和通分。(9)比较分数的大小,体验策略与方法的多样性。5.《分数加法和减法》单元(1)在现实情境中体会异分母分数相加减,要先通分,再加减。例1在问题情境中体验为什么先通分。“试一试”借鉴异分母分数加法的计算经验,进行异分母分数的减法。挖掘并充分利用练习题里隐含的知识内容。(2)教学三个分数的加减计算,进一步培养运算能力。例2通过解决实际问题,教学分数连减计算。“试一试”和“练一练”继续教学分数的连加和连减混合运算。练习十二把培养运算能力作为练习的主要目的,同时也关注数感的发展。6.《圆》单元(1)由静到动、由表及里逐步认识圆,形成圆的概念。例1看圆与画圆,介绍圆的圆心、半径和直径等知识。例2在圆上画一画、比一比、折一折,进一步体会圆的特征,加强圆的概念。例3教学扇形,一方面继续认识圆,另一方面为教学扇形统计图作铺垫。精心设计练习题,深入体验圆。(2)通过操作活动理解圆周率的意义,得出圆周长的计算方法。(3)通过图形的等积变化,推导圆面积的计算公式。(4)适量编排画曲线图形的练习,体会曲线的特点。7.《解决问题的策略》单元(1)利用图形的转化,感悟转化是解决问题的有效策略。(2)借助图形直观,运用转化策略解决更多的问题。8.《整理与复习》单元回忆整理、练习应用、反思积淀是最主要的复习方法。通过回忆整理,进一步理解知识,完善认知结构,有助于对知识的记忆与提取;通过练习应用,重温解题活动,形成必要的技能,有利于提高解决问题的能力;通过评价反思,培养数学学习的情感态度,积累数学学习的方法经验,为以后继续学习数学构建新的平台。(1)“数的世界”着重复习简易方程、因数与倍数、分数等内容。(2)“图形王国”着重复习圆的知识。(3)“统计天地”着重复习折线统计图的知识。(4)“应用广角”中综合运用数学知识和解题策略解决实际问题。(三)教学实施建议1.把握教学要求,促进学生自主发展。教师要加强学法指导,通过探究、交流、指导、反馈、总结的学习过程,培养学生学习兴趣,提高自学能力。本册教材设计了适量探索性和开放性的数学问题,给学生提供自主探索的机会和一个比较充分的思考空间。培养学生肯于钻研、善于思考、勤于动手的科学态度。教师要关注学生的个体差异,尊重学生的创造精神。对学生在探索过程中遇到的问题,要适时、有效的帮助和引导。通过自身体验在分析、整理的过程中学习概念,不要用死记硬背的方法。2.重视实践探索,经历知识形成过程。动手操作是学生直接获取经验知识的最好途径,它可以启发学生积极参与思考,激发学生对数学产生兴趣与探索欲望。使学生能进一步在大脑中留下空间图形的形象,从而发展空间观念。例如,在探索圆的周长公式时,组织学生开展实验操作,让他们自制大小不同的圆形纸片,并通过操作、测量和计算,了解圆周长与它的直径的关系。在探索圆的面积公式时,教材通过剪、拼等方法,引导学生“化曲为直”,进而推导出圆的面积公式,正是操作活动,学生的探究学习,能够得以顺利展开,也正是操作活动,学生对有关数学知识和规律的体验,也就更加真切而深刻,同样也正是操作活动,提高了学生数学学习的兴趣和学好数学的自信心。3.重视数学阅读,感受数学文化价值。本册教材,十分重视让学生在数学学习中感受数学文化价值。例如,在“圆”这部分中,一共安排了两则“你知道吗”和两次“动手做”活动,在练习中更是穿插了大量与生活密切相关的问题,通过对这些内容的学习,学生欣赏了生活中美丽的圆,了解到古今中外数学家对圆的研究的伟大成果,体会了解决与圆相关的一些现实问题的方法……所有这些,都能让学生在厚重的历史和精彩的现实中,深切感受到数学的文化价值。4. 重视综合实践活动,培养学生的应用意识和实践能力。重视引导学生有目的、有计划、有步骤地开展一些实践活动,对这方面的内容不但不能随意删减,而且要加强这方面内容安排的密度和强度。 例如,“蒜叶的生长”这是一个大致需要延续20天的“长作业”性质的综合与实践活动,要和学生讲清实验的目的,要求和实验过程需要注意的地方,提醒学生,坚持按时观察,认真测量,准确记录,着力引导学生,依据相关数据以及相应的统计图进行比较分析,进而获得相对客观的结论,可以从已有的数据中获得初步的结论,也可以基于已有的数据进行一些简单的预测,要使学生在交流过程中,真正体验数据,对于描述问题,分析问题,发现规律,获得结论的价值,从而增进对相关统计知识和方法的理解。三、教学进度安排全册教材共安排63课时的教学内容,另外还安排了5课时的全册内容的整理与复习。 周 次教 学 内 容 和 课 时 安 排备 注1简易方程(4)机动(1)2简易方程(4)机动(1)3简易方程(4)机动(1)4折线统计图(3)实践活动(1)机动(1)5因数和倍数(5)6因数和倍数(4)机动(1)7因数和倍数(3)探索规律(1)8分数的意义和性质(4)9分数的意义和性质(4)机动(1)10分数的意义和性质(4)机动(1)11分数的意义和性质(3)机动(1)12实践活动(1)分数加法和减法(1)机动(2)13分数加法和减法(3)机动(2)14圆(4)机动(1)15圆(3)机动(1)16圆(4)机动(1)17解决问题的策略(3)机动(2)18整理与复习(5)
相关资料
更多