


2023--2024学年湘教版八年级下册数学重要知识点概括
展开
这是一份2023--2024学年湘教版八年级下册数学重要知识点概括,共10页。
直角三角形1、角平分线:角平分线上的点到这个角的两边的距离相等。如图, ∵ AD是∠BAC的平分线(或∠1=∠2) PE⊥AC PF⊥ AB ∴ PE=PF角分线的逆定理:角内部的点到角两边的距离相等,那么这一点在角的角平分线上。∵ PE⊥AC, PF⊥AB PE=PF ∴ 点P在∠BAC的平分线AD上2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点的距离相等。如图,∵ CD是线段AB的垂直平分线∴ PA=PB3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a b的平方和等于斜边c的平方,即a2+b2=c2。②逆定理:如果三角形的三边长a b、c有关系a2+b2=c2,那么这个三角形是直角三角形。分别计算“a2+b2”和“c2”,相等就是Rt△,不相等就不是Rt△。4、直角三角形全等方法: SAS、ASA、SSS、AAS、HL。HL:斜边和一条直角边分别对应相等的两个直角三角形全等。5、直角三角形的其它性质①直角三角形两锐角互余②直角三角形斜边上的中线等于斜边上的一半如图,在Rt△ABC中∵CD是斜边AB的中线∴CD=12AB③在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。如图,在Rt△ABC中∵∠A=30° ∴BC=12AB④在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。如图,在Rt△ABC中∵BC=12AB ∴∠A=30°6、直角三角形的判定①有一个角是直角的三角形是直角三角形。②如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。③勾股定理的逆定理:如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。7、三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。如图,在△ABC中∵ E是AB的中点,F是AC的中点,即EF是△ABC的中位线.∴ EF∥BC 且EF=12BC四边形多边形内角和公式:n边形的内角和=(n-2) ·180°; 任意多边形的外角和: 360°n边形的对角线共有n(n−3)2条 求n正边形的边数:n=内角和180°+2=360°外角度数2、中心对称: (在直角坐标系中即关于原点对称,其横、纵坐标都互为相反数)※1.成中心对称的两个图形是全等.※2.成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.会画与某某图形成中心对称图形.会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形.3、特殊四边形的性质和判定矩形,菱形和正方形的判定4、面积公式①S平行四边形=底×高. ②S矩形=长×宽 ③S 正方形=边长×边长④S菱形=底×高=12×(对角线的积),即: S=(a×b) ÷25、有关中点四边形问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是菱形; (3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形。图形与坐标第一象限(+,+)第四象限(+,-)第三象限(-,-)第二象限(-,+)O平面直角坐标系及点的特征:一次函数一次函数的图像及性质:一次函数图象的平移一次函数解析式的确定:一次函数与方程(组)的关系:如图1,一次函数y=kx+b(k≠0)的图象与x轴的交点A的横坐标为m方程y=kx+b的 解为x=m。yOk1x+b1>k2x+b2B(m,n)y=k1x+b1k1x+b10A(m,0)y=kx+bkx+b0的解集(即x>m) y=kx+b的图象在x轴上方时,对应的x的取值范围;不等式kx+bm) y=k1x+b1的图象在y=k2x+b2图象上方时,对应的x的取值范围(即虚线右侧部分);不等式k1x+b10 (+, +) 点P(x,y)在第二象限内 ↔ x0 (-,+)点P(x,y)在第三象限内 ↔ x