湖北省各地市2023中考数学真题分类汇编03解答题(提升题)知识点分类②
展开1.(2023•荆州)先化简,再求值:(﹣)÷,其中x=()﹣1,y=(﹣2023)0.
二.一次函数的应用(共1小题)
2.(2023•鄂州)1号探测气球从海拔10m处出发,以1m/min的速度竖直上升.与此同时,2号探测气球从海拔20m处出发,以am/min的速度竖直上升.两个气球都上升了1h.1号、2号气球所在位置的海拔y1,y2(单位:m)与上升时间x(单位:min)的函数关系如图所示.请根据图象回答下列问题:
(1)a= ,b= ;
(2)请分别求出y1,y2与x的函数关系式;
(3)当上升多长时间时,两个气球的海拔竖直高度差为5m?
三.二次函数的应用(共2小题)
3.(2023•湖北)某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:
(1≤x≤60,x为整数)
设该商品的日销售利润为w元.
(1)直接写出w与x的函数关系式 ;
(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?
4.(2023•武汉)某课外科技活动小组研制了一种航模飞机,通过实验,收集了飞机相对于出发点的飞行水平距离x(单位:m)、飞行高度y(单位:m)随飞行时间t(单位:s)变化的数据如表.
探究发现 x与t,y与t之间的数量关系可以用我们已学过的函数来描述.直接写出x关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围).
问题解决 如图,活动小组在水平安全线上A处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.
(1)若发射平台相对于安全线的高度为0m,求飞机落到安全线时飞行的水平距离;
(2)在安全线上设置回收区域MN,AM=125m,MN=5m.若飞机落到MN内(不包括端点M,N),求发射平台相对于安全线的高度的变化范围.
四.平行线的性质(共1小题)
5.(2023•武汉)如图,在四边形ABCD中,AD∥BC,∠B=∠D,点E在BA的延长线上,连接CE.
(1)求证:∠E=∠ECD;
(2)若∠E=60°,CE平分∠BCD,直接写出△BCE的形状.
五.圆周角定理(共1小题)
6.(2023•武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BAC.
(1)求证:∠AOB=2∠BOC;
(2)若AB=4,,求⊙O的半径.
六.切线的判定与性质(共1小题)
7.(2023•湖北)如图,等腰△ABC内接于⊙O,AB=AC,BD是边AC上的中线,过点C作AB的平行线交BD的延长线于点E,BE交⊙O于点F,连接AE,FC.
(1)求证:AE为⊙O的切线;
(2)若⊙O的半径为5,BC=6,求FC的长.
七.作图—复杂作图(共1小题)
8.(2023•湖北)已知正六边形ABCDEF,请仅用无刻度的直尺完成下列作图(保留作图痕迹,不写作法,用虚线表示作图过程,实线表示作图结果).
(1)在图1中作出以BE为对角线的一个菱形BMEN;
(2)在图2中作出以BE为边的一个菱形BEPQ.
八.翻折变换(折叠问题)(共1小题)
9.(2023•湖北)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD交于点E,F,连接BM.
(1)求证:∠AMB=∠BMP;
(2)若DP=1,求MD的长.
九.解直角三角形的应用-坡度坡角问题(共1小题)
10.(2023•湖北)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cs18°≈0.95,tan18°≈0.32)
一十.解直角三角形的应用-仰角俯角问题(共1小题)
11.(2023•鄂州)鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).
(1)求自动扶梯AD的长度;
(2)求大型条幅GE的长度.(结果保留根号)
一十一.总体、个体、样本、样本容量(共1小题)
12.(2023•武汉)某校为了解学生参加家务劳动的情况,随机抽取了部分学生在某个休息日做家务的劳动时间t(单位:h)作为样本,将收集的数据整理后分为A,B,C,D,E五个组别,其中A组的数据分别为:0.5,0.4,0.4,0.4,0.3,绘制成如下不完整的统计图表.
各组劳动时间的频数分布表
请根据以上信息解答下列问题.
(1)A组数据的众数是 ;
(2)本次调查的样本容量是 ,B组所在扇形的圆心角的大小是 ;
(3)若该校有1200名学生,估计该校学生劳动时间超过1h的人数.
一十二.条形统计图(共1小题)
13.(2023•湖北)为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A(很强),B(强),C(一般),D(弱),E(很弱)分为五个等级,将收集的数据整理后,绘制成如下不完整的统计图表.
(1)本次调查的学生共 人;
(2)已知a:b=1:2,请将条形统计图补充完整;
(3)若将A,B,C三个等级定为“防诈骗意识”合格,请估计该校2000名学生中“防诈骗意识”合格的学生有多少人?
湖北省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类②
参考答案与试题解析
一.分式的化简求值(共1小题)
1.(2023•荆州)先化简,再求值:(﹣)÷,其中x=()﹣1,y=(﹣2023)0.
【答案】,2.
【解答】解:原式=[﹣]•
=(﹣)•
=•
=,
∵x=()﹣1=2,y=(﹣2023)0=1,
∴原式==2.
二.一次函数的应用(共1小题)
2.(2023•鄂州)1号探测气球从海拔10m处出发,以1m/min的速度竖直上升.与此同时,2号探测气球从海拔20m处出发,以am/min的速度竖直上升.两个气球都上升了1h.1号、2号气球所在位置的海拔y1,y2(单位:m)与上升时间x(单位:min)的函数关系如图所示.请根据图象回答下列问题:
(1)a= 0.5 ,b= 30 ;
(2)请分别求出y1,y2与x的函数关系式;
(3)当上升多长时间时,两个气球的海拔竖直高度差为5m?
【答案】(1)0.5,30;(2)y1=10+x,y2=20+0.5x;(3)10或30.
【解答】解:(1)∵1号探测气球从海拔10m处出发,以1m/min的速度竖直上升.与此同时,2号探测气球从海拔20m处出发,以am/min的速度竖直上升.
当x=20时,两球相遇,
y1=10+x=10+20=30,
∴b=30,
设2号探测气球解析式为y2=20+ax,
∵y2=20+ax过(20,30),
∴30=20+20a,
解得a=0.5,
∴y2=20+0.5x,
故答案为:0.5,30;
(2)根据题意得:
1号探测气球所在位置的海拔:y1=10+x,
2号探测气球所在位置的海拔:y2=20+0.5x;
(3)分两种情况:
①2号探测气球比1号探测气球海拔高5米,根据题意得:
(20+0.5x)﹣(x+10)=5,
解得x=10;
②1号探测气球比2号探测气球海拔高5米,根据题意得:
(x+10)﹣(0.5x+20)=5,
解得x=30.
综上所述,上升了10或30min后这两个气球相距5m.
三.二次函数的应用(共2小题)
3.(2023•湖北)某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:
(1≤x≤60,x为整数)
设该商品的日销售利润为w元.
(1)直接写出w与x的函数关系式 w= ;
(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?
【答案】(1)w=;
(2)该商品在第26天的日销售利润最大,最大日销售利润是1296元.
【解答】解:(1)当1≤x≤30时,
w=(0.5x+35﹣30)•(﹣2x+124)=﹣x2+52x+620,
当31≤x≤60时,
w=(50﹣30)•(﹣2x+124)=﹣40x+2480,
∴w与x的函数关系式w=,
故答案为:w=;
(2)当1≤x≤30时,
w=﹣x2+52x+620=﹣(x﹣26)2+1296,
∵﹣1<0,
∴当x=26时,w有最大值,最大值为1296;
当31≤x≤60时,w=﹣40x+2480,
∵﹣40<0,
∴当x=31时,w有最大值,最大值为﹣40×31+2480=1240,
∵1296>1240,
∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.
4.(2023•武汉)某课外科技活动小组研制了一种航模飞机,通过实验,收集了飞机相对于出发点的飞行水平距离x(单位:m)、飞行高度y(单位:m)随飞行时间t(单位:s)变化的数据如表.
探究发现 x与t,y与t之间的数量关系可以用我们已学过的函数来描述.直接写出x关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围).
问题解决 如图,活动小组在水平安全线上A处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.
(1)若发射平台相对于安全线的高度为0m,求飞机落到安全线时飞行的水平距离;
(2)在安全线上设置回收区域MN,AM=125m,MN=5m.若飞机落到MN内(不包括端点M,N),求发射平台相对于安全线的高度的变化范围.
【答案】发现:t;
问题解决:(1)120m;(2)大于12.5m且小于26m
【解答】解:探究发现:x与t是一次函数关系,y与t是二次函数关系,
设x=kt,y=at2+bt,
由题意得:10=2k,,
解得:k=5,,
∴x=5t,y=﹣t2+12t,
问题解决:(1)依题意,得﹣t2+12t=0.
解得,t1=0(舍),t2=24,
当t=24 时,x=120.
答:飞机落到安全线时飞行的水平距离为120m.
(2)设发射平台相对于安全线的高度为nm,飞机相对于安全线的飞行高度y′=﹣t2+12t+n,
∵125<x<130,∴125<5t<130,∴25<t<26.
在y′=﹣t2+12t+n中,
当t=25,y′=0时,n=12.5;
当t=26,y′=0时,n=26.
∴12.5<n<26.
答:发射平台相对于安全线的高度的变化范围是大于12.5m且小于26m.
四.平行线的性质(共1小题)
5.(2023•武汉)如图,在四边形ABCD中,AD∥BC,∠B=∠D,点E在BA的延长线上,连接CE.
(1)求证:∠E=∠ECD;
(2)若∠E=60°,CE平分∠BCD,直接写出△BCE的形状.
【答案】(1)证明见解析;(2)△BCE是等边三角形,理由见解析.
【解答】(1)证明:∵AD∥BC,
∴∠EAD=∠B,
∵∠B=∠D,
∴∠EAD=∠D,
∴BE∥CD,
∴∠E=∠ECD.
(2)解:△BCE是等边三角形,理由如下:
∵CE平分∠BCD,
∴∠BCE=∠ECD,
∵EB∥CD,
∴∠ECD=∠E=60°,
∴∠B=180°﹣∠E﹣∠BCE=60°,
∴∠B=∠BCE=∠E,
∴△BCE是等边三角形.
五.圆周角定理(共1小题)
6.(2023•武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BAC.
(1)求证:∠AOB=2∠BOC;
(2)若AB=4,,求⊙O的半径.
【答案】见试题解答内容
【解答】(1)证明:∵,,∠ACB=2∠BAC,
∴∠AOB=2∠BOC;
(2)解:过点O作半径OD⊥AB于点E,连接DB,
∴AE=BE,
∵∠AOB=2∠BOC,∠DOB=∠AOB,
∴∠DOB=∠BOC.
∴BD=BC.
∵AB=4,,
∴BE=2,,
在 Rt△BDE 中,∠DEB=90°,
∴,
在Rt△BOE中,∠OEB=90°,
OB2=(OB﹣1)2+22,
解得,
即⊙O的半径是 .
六.切线的判定与性质(共1小题)
7.(2023•湖北)如图,等腰△ABC内接于⊙O,AB=AC,BD是边AC上的中线,过点C作AB的平行线交BD的延长线于点E,BE交⊙O于点F,连接AE,FC.
(1)求证:AE为⊙O的切线;
(2)若⊙O的半径为5,BC=6,求FC的长.
【答案】(1)证明过程见解析;
(2)5.
【解答】(1)证明,∵AB∥CE,
∴∠ABD=∠CED,∠BAD=∠ECD,
又∵AD=CD,
∴△ABD≌△CED( AAS),
∴AB=CE.
∴四边形ABCE是平行四边形.
∴AE∥BC.
作AH⊥BC于H.
∵AB=AC,
∴AH为BC的垂直平分线.
∴点O在AH上.
∴AH⊥AE.
即OA⊥AE,又点A在⊙O上,
∴AE为⊙O的切线;
(2)解:过点D作DM⊥BC于M,连接OB,
∵AH为BC的垂直平分线,
∴BH=HC=BC=3,
∴OH==4,
∴AH=OA+OH=5+4=9,
∴AB=AC=,
∴CD=AC=,
∵AH⊥BC,DM⊥BC,
∴DM∥AH
∴△CMD∽△CHA,
又AD=CD,
∴,
∴MH=HC=,DM=AH=,
∴BM=BH+MH=3+=,
∴BD=,
∵∠CFD=∠BAD,∠FDC=∠ADB,
∴△FCD∽△ABD,
∴,
∴,
∴FC=5.
七.作图—复杂作图(共1小题)
8.(2023•湖北)已知正六边形ABCDEF,请仅用无刻度的直尺完成下列作图(保留作图痕迹,不写作法,用虚线表示作图过程,实线表示作图结果).
(1)在图1中作出以BE为对角线的一个菱形BMEN;
(2)在图2中作出以BE为边的一个菱形BEPQ.
【答案】(1)见解答;
(2)见解答.
【解答】解:如图:
(1)菱形BMEN、菱形BPEQ即为所求;
(2)菱形BEPQ即为所求.
八.翻折变换(折叠问题)(共1小题)
9.(2023•湖北)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD交于点E,F,连接BM.
(1)求证:∠AMB=∠BMP;
(2)若DP=1,求MD的长.
【答案】(1)证明过程见详解;(2)MD=.
【解答】(1)证明:点B、M关于线段EF对称,由翻折的性质可知:∠MBC=∠BMP,
∵ABCD是正方形,
∴AD∥BC,
∴∠MBC=∠AMB,
∴∠AMB=∠BMP(等量代换).
(2)解:设MD=x,则AM=3﹣x,设AE=y,则EM=EB=3﹣y.
在Rt△AEM中,AE2+AM2=EM2,
∴y2+(3﹣x)2=(3﹣y)2,
∴y=﹣x2+x.即AE=﹣x2+x.
∵∠ABC=∠EMN=90°,
∴∠AME+∠DMP=90°,
又∵∠AEM+∠AME=90°,
∴∠AEM=∠DMP,∠A=∠D,
∴△AEM∽△DMP.
∴=,=,
整理得:,
∴x=.
∴MD=.
九.解直角三角形的应用-坡度坡角问题(共1小题)
10.(2023•湖北)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cs18°≈0.95,tan18°≈0.32)
【答案】斜坡AB的长约为10.3米.
【解答】解:过点D作DE⊥BC,垂足为E,
由题意得:AF⊥BC,DE=AF,
∵斜面AB的坡度i=3:4,
∴=,
∴设AF=3x米,则BF=4x米,
在Rt△ABF中,AB===5x(米),
在Rt△DEC中,∠C=18°,CD=20米,
∴DE=CD•sin18°≈20×0.31=6.2(米),
∴AF=DE=6.2米,
∴3x=6.2,
解得:x=,
∴AB=5x≈10.3(米),
∴斜坡AB的长约为10.3米.
一十.解直角三角形的应用-仰角俯角问题(共1小题)
11.(2023•鄂州)鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).
(1)求自动扶梯AD的长度;
(2)求大型条幅GE的长度.(结果保留根号)
【答案】(1)自动扶梯AD的长度为25米;
(2)大型条幅GE的长度为(110﹣10)米.
【解答】解:(1)过点D作DH⊥AB,垂足为H,
在Rt△ADH中,AH=15米,tan∠DAB=,
∴DH=AH•tan∠DAB=15×=20(米),
∴AD===25(米),
∴自动扶梯AD的长度为25米;
(2)过点C作CM⊥AB,垂足为M,
由题意得:DC=HM=45米,DH=CM=20米,
∵DC∥AB,
∴∠DCG=∠B=45°,
在Rt△CMB中,BM==20(米),
∵AF=30米,AH=15米,
∴BF=AF+AH+HM+BM=30+15+45+20=110(米),
在Rt△AFE中,∠EAF=30°,
∴EF=AF•tan30°=30×=10(米),
在Rt△GFB中,GF=BF•tan45°=110(米),
∴GE=GF﹣EF=(110﹣10)米,
∴大型条幅GE的长度为(110﹣10)米.
一十一.总体、个体、样本、样本容量(共1小题)
12.(2023•武汉)某校为了解学生参加家务劳动的情况,随机抽取了部分学生在某个休息日做家务的劳动时间t(单位:h)作为样本,将收集的数据整理后分为A,B,C,D,E五个组别,其中A组的数据分别为:0.5,0.4,0.4,0.4,0.3,绘制成如下不完整的统计图表.
各组劳动时间的频数分布表
请根据以上信息解答下列问题.
(1)A组数据的众数是 0.4 ;
(2)本次调查的样本容量是 60 ,B组所在扇形的圆心角的大小是 72° ;
(3)若该校有1200名学生,估计该校学生劳动时间超过1h的人数.
【答案】(1)0.4;
(2)60,72°;
(3)860人.
【解答】解:(1)∵A组的数据分别为:0.5,0.4,0.4,0.4,0.3,
∴A组数据的众数是0.4;
故答案为:0.4;
(2)本次调查的样本容量是15÷25%=60,
∵a=60﹣5﹣20﹣15﹣8=12,
∴B组所在扇形的圆心角的大小是360°×=72°,
故答案为:60,72°;
(3)1200×=860(人),
答:估计该校学生劳动时间超过lh的大约有860人.
一十二.条形统计图(共1小题)
13.(2023•湖北)为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A(很强),B(强),C(一般),D(弱),E(很弱)分为五个等级,将收集的数据整理后,绘制成如下不完整的统计图表.
(1)本次调查的学生共 100 人;
(2)已知a:b=1:2,请将条形统计图补充完整;
(3)若将A,B,C三个等级定为“防诈骗意识”合格,请估计该校2000名学生中“防诈骗意识”合格的学生有多少人?
【答案】(1)100;(2)补充完整的条形统计图见解答;(3)1300人.
【解答】解:(1)20÷20%=100(人),
即本次调查的学生共100人,
故答案为:100;
(2)∵a:b=1:2,
∴a=(100﹣20﹣19﹣16)×=15,b=(100﹣20﹣19﹣16)×=30,
补充完整的条形统计图如图所示;
(3)2000×=1300(人),
答:估计该校2000名学生中“防诈骗意识”合格的学生有1300人.
时间:第x(天)
1≤x≤30
31≤x≤60
日销售价(元/件)
0.5x+35
50
日销售量(件)
124﹣2x
飞行时间t/s
0
2
4
6
8
…
飞行水平距离x/m
0
10
20
30
40
…
飞行高度y/m
0
22
40
54
64
…
组别
时间t/h
频数
A
0<t≤0.5
5
B
0.5<t≤1
a
C
1<t≤1.5
20
D
1.5<t≤2
15
E
t>2
8
等级
人数
A(很强)
a
B(强)
b
C(一般)
20
D(弱)
19
E(很弱)
16
时间:第x(天)
1≤x≤30
31≤x≤60
日销售价(元/件)
0.5x+35
50
日销售量(件)
124﹣2x
飞行时间t/s
0
2
4
6
8
…
飞行水平距离x/m
0
10
20
30
40
…
飞行高度y/m
0
22
40
54
64
…
组别
时间t/h
频数
A
0<t≤0.5
5
B
0.5<t≤1
a
C
1<t≤1.5
20
D
1.5<t≤2
15
E
t>2
8
等级
人数
A(很强)
a
B(强)
b
C(一般)
20
D(弱)
19
E(很弱)
16
湖北省各地市2023中考数学真题分类汇编03解答题(基础题)知识点分类①: 这是一份湖北省各地市2023中考数学真题分类汇编03解答题(基础题)知识点分类①,共15页。试卷主要包含了化简;,先化简,再求值,,其中x=﹣2,x+m2+m=0,解不等式组请按下列步骤完成解答等内容,欢迎下载使用。
湖北省各地市2023中考数学真题分类汇编03解答题(基础题)知识点分类②: 这是一份湖北省各地市2023中考数学真题分类汇编03解答题(基础题)知识点分类②,共15页。试卷主要包含了先化简,再求值,创建文明城市,构建美好家园,与函数为的图象交于两点等内容,欢迎下载使用。
湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类①: 这是一份湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类①,共44页。试卷主要包含了的顶点,,交y轴于点C,x+b等内容,欢迎下载使用。