09,广东省深圳市翠园文锦中学2023-2024 学年九年级下学期月考数学试题
展开1. 如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是( )
A. 跟B. 百C. 走D. 年
【答案】B
【解析】
【分析】正方体平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.
【详解】∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,
∴在此正方体上与“建”字相对的面上的汉字是“百”.
故选B.
【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.
2. 我国传统文化中的“福禄寿喜”,这四个图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】B
【解析】
【分析】本题考查的是中心对称图形与轴对称图形的概念,熟知轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.根据轴对称图形与中心对称图形的概念求解.
【详解】解:A、不是轴对称也不是中心对称图形,故该选项不符合题意,
B、是轴对称图形又是中心对称图形,符合题意,
C、是轴对称图形,不是中心对称图形,故该选项不符合题意,
D、不是轴对称也不是中心对称图形,故该选项不符合题意,
故答案为:B
3. 根据统计,某奥林匹克旗舰店销售额从 2 月初开始猛增,在开幕式 2 月 4 日当天达到最高值,达到 您看到的资料都源自我们平台,家威杏 MXSJ663 免费下载1160万元.其中数据 1160 万用科学记数法表示为( )
A. 0.116×104万B. 1.16×103万C. 11.6×102万D. 116×10 万
【答案】B
【解析】
【分析】科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值小于1时,n是负数.
【详解】1160万用科学记数法表示为万,故B正确.
故选:B.
【点睛】本题考查用科学记数法表示较大的数,一般形式为,其中1≤|a|<10,n可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.
4. 下列运算中正确的是( )
A. B. C. D.
【答案】B
【解析】
【分析】根据合并同类项,同底数幂的乘法,积的乘方,幂的乘方,同底数幂的除法运算法则求解即可.
【详解】解:A. ,原式结果错误;
B. ,原式结果正确;
C. ,原式结果错误;
D. ,原式结果错误.
故选:B.
【点睛】本题考查了同底数幂的乘法,积的乘方,幂的乘方,同底数幂的除法的应用,主要考查学生的理解能力和计算能力.
5. 不等式的解在数轴上的表示正确的是( )
A. B. C. D.
【答案】B
【解析】
【分析】先求出不等式的解集,再表示在数轴上即可.
详解】解:∵,
∴,
在数轴上表示为:
,
故选:B.
【点睛】本题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握一元一次不等式的解法是解本题的关键.要注意把每个不等式的解集在数轴上表示出来的方法(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圈表示.
6. 关于一元二次方程根的情况,下列说法中正确的是( )
A. 有两个不相等的实数根B. 有两个相等的实数根
C. 没有实数根D. 无法确定
【答案】A
【解析】
【分析】直接利用一元二次方程根的判别式即可得.
【详解】解:
其中,,,
∴,
∴方程有两个不相等的实数根.
故选:A.
【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.
7. 如图,点A的坐标为(1,3),点B在x轴上,把沿x轴向右平移到,若四边形ABDC的面积为9,则点C的坐标为( )
A. (1,4)B. (3,4)C. (3,3)D. (4,3)
【答案】D
【解析】
【分析】根据平移的性质得出四边形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.
【详解】解:∵把△OAB沿x轴向右平移到△ECD,
∴四边形ABDC是平行四边形,
∴AC=BD,A和C的纵坐标相同,
∵四边形ABDC的面积为9,点A的坐标为(1,3),
∴3AC=9,
∴AC=3,
∴C(4,3),
故选:D.
【点睛】本题考查了坐标与图形的变换-平移,平移的性质,平行四边形的性质,求得平移的距离是解题的关键.
8. 如图,点C在以AB为直径的圆上,则BC=( )
A. B. C. D.
【答案】B
【解析】
【分析】根据圆周角定理得出∠ACB=90°,根据三角函数的定义求出BC即可.
【详解】解:连接AC,
∵AB是⊙的直径,
∴∠ACB=90°,
∵sinB=,csB=,tanB=,
∴AC=AB•sinB,BC=AB•csB,AC=BC•tanB,
观察四个选项,选项B正确,
故选;B.
【点睛】本题考查了圆周角定理,解直角三角形,熟记锐角三角函数的定义是解答此题的关键.
9. 二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是( )
A. B. C. D.
【答案】A
【解析】
【分析】先分析二次函数的图像的开口方向即对称轴位置,而一次函数的图像恒过定点,即可得出正确选项.
【详解】二次函数的对称轴为,一次函数的图像恒过定点,所以一次函数的图像与二次函数的对称轴的交点为,只有A选项符合题意.
故选A.
【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数的图像恒过定点,本题蕴含了数形结合的思想方法等.
10. 如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E.DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AD=AE;②∠AED=∠CED;③OE=OD;④BH=HF;⑤BC-CF=2HE,其中正确的有( )
A. 2个B. 3个C. 4个D. 5个
【答案】D
【解析】
【分析】根据角平分线的定义可得∠BAE=∠DAE=45°,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD即可判断① ;由AE=AD得到∠AED=∠ADE,再由AD∥BC,即可得到∠ADE=∠CED,即可判断② ;证明ABE≌△AHD即可推出AB=BE=AH=HD,由三角形内角和定理得到∠ADE=∠AED=(180°-∠DAE)=67.5°,∠ADH=∠DAH=45°,∠CED=∠AED=67.5°,∠AHB=∠ABH=(180°-∠BAH)=67.5°,从而推出∠OHE=67.5°=∠AED,得到OE=OH,再由∠DHO=∠DHE-∠OHE=22.5°,∠ODH=∠ADE-∠ADH=22.5°,推出OH=OD,即可判断③ ;再证明△BEH≌△HDF得到BH=HF,HE=DF即可判断④ ;再由HE=AE-AH=BC-CD,得到BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE即可判断⑤.
【详解】解:∵四边形ABCD是矩形,
∴∠BAD=∠ABE=90°,AD∥BC
∵AE平分∠BAD,
∴∠BAE=∠DAE=∠BAD=45°,
∵AD∥BC,
∴∠DAE=∠AEB=45°,
∴∠AEB=∠BAE=45°,
∴AB=BE,
∴,
∵
∴AD=AE,故①正确;
∴∠AED=∠ADE,
∵AD∥BC,
∴∠ADE=∠CED,
∴∠AED=∠CED,故②正确;
∵DH⊥AE,
∴∠AHD=∠ABE=90°
在△ABE和△AHD中,
,
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°-∠DAE)=67.5°,∠ADH=∠DAH=45°
∴∠CED=∠AED=67.5°,
∵AB=AH,
∵∠AHB=∠ABH=(180°-∠BAH)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=67.5°=∠AED,
∴OE=OH,
∵∠DHO=∠DHE-∠OHE=22.5°,∠ODH=∠ADE-∠ADH=22.5°,
∴∠DHO=∠ODH,
∴OH=OD,
∴OE=OD=OH,故③正确;
∵∠EBH=∠ABE-∠ABH=22.5°,
∴∠EBH=∠OHD,
在△BEH和△HDF中,
,
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故④正确;
∵HE=AE-AH=BC-CD,
∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故⑤正确;
故选D.
【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.
二、填空题:本题共5小题,每小题3分,共15分.
11. 分解因式:=___________________________.
【答案】2a(x+2)(x﹣2).
【解析】
【分析】
【详解】试题分析:原式=2a(x2-4) =2a(x+2)(x﹣2).故答案为2a(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用.
12. 如图,AB∥CD,∠ABE=120°,∠DCE=110°,则∠BEC=______°.
【答案】50
【解析】
【分析】两直线平行,同旁内角互补以及内错角相等,在作辅助线后,根据这两条性质即可解答.
【详解】解:如图,过点E作EF∥CD,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠FEB=∠ABE,
∵∠ABE=120°,
∴∠FEB=∠ABE=120°,
∵EF∥CD,∠DCE=110°,
∴∠FEC+∠DCE=180°,
∴∠FEC=180°-∠DCE=70°,
∴∠BEC=∠FEB-∠FEC=50°.
故答案为:50.
【点睛】此题主要考查平行线的性质:两直线平行,同旁内角互补及内错角相等.
13. 从,,1,2中任选两个数作为中的k和b,则该函数图象不经过第三象限的概率是_________.
【答案】
【解析】
【分析】将k,b所有的组合情况列举出来,然后根据一次函数图像位置与系数的关系,找出图像不经过第三象限的k和b的组合,然后利用概率的计算公式进行计算即可.
【详解】
如图,k、b的取值共有12种等可能的结果;
而一次函数y=kx+b的图象不经过第三象限,则k<0,b≥0,
∴满足条件的k、b的取值有(-2,1),(-2,2),(-1,1),(-1,2)
∴一次函数y=kx+b的图象不经过第三象限的概率=
故答案为.
【点睛】本题考查了一次函数图像位置与系数的关系以及概率的计算方法,解决本题的关键是正确理解题意,熟练掌握一次函数系数和图像位置的关系.
14. 如图 ,点 A 是反比例函数(k≠0,x<0)图象上的一点,经过点 A 的直线与坐标轴分别交于点C和点D,过点A作AB⊥y轴于点B,,连接BC,若△BCD的面积为2,则k的值为_____.
【答案】﹣6
【解析】
【分析】过点A作AE⊥x轴于点E,证明四边形AEOB是矩形,由k的几何意义知=|k|,由△BCD的面积为2,,得到△OCD的面积为4,再证明△ABD∽△COD,,得到,进一步求得△ABC的面积为3,由,即可求得|k|=6,由反比例函数图像所在象限,即可得到k的值.
【详解】解:过点A作AE⊥x轴于点E,则∠AEO=90°,
∵AB⊥y轴,OB⊥x轴
∴∠AEO=∠BOE=∠ABO=90°,
∴四边形AEOB是矩形
∴ABx轴
∴ =|k|
∵△BCD的面积为2,
∴△COD的面积为4,
∵∠ABD=∠COD=90°,∠ADB=∠CDO
∴△ABD∽△COD,
∴
∴
∴,
∴=|k|=6
∵反比例函数(k≠0,x<0)图象在第二象限
∴k <0
∴ k=-6
故答案:﹣6
【点睛】此题考查了反比例函数(k≠0)中k的几何意义,还考查了相似三角形的判定和性质,解题的关键是抓住=|k|进行求解.
15. 如图,在等腰Rt△ABC中,∠B=90°,BA=BC,D为BC上一点,且BD=3,E为AD上一点,连接CE,∠CED=45°,CE=AE,则CE=_______
【答案】.
【解析】
【分析】连结BE,将射线CE逆时针旋转45°,交AD延长线于G,连结BG,利用三角函数CG= ,由,可得CG=AE,可证△ABE≌△CBG(SAS),再证△EBG为等腰直角三角形,可证△BDG∽CDE,求出CD=6,在Rt△BCE中,由勾股定理可求CE.
【详解】解:连结BE,将射线CE逆时针旋转45°,交AD延长线于G,连结BG,
∵∠GEC=45°,∠ECG=45°,
∴∠EGC=90°,EG=CG,
∴EG=CG=CEsin45°=,
∴CG=,
∵△ABC为等腰直角三角形,
∴∠BAC=∠BCA=45°,
∴∠BAE+∠EAC=∠EAC+∠ACE=∠ACE+∠ECD=∠ECD+∠BCG=45°,
∴∠BAE=∠ACE=∠BCG,∠EAC=∠ECB,
在△BAE和△BCG中,
,
∴△ABE≌△CBG(SAS),
∴BE=BG,∠ABE=∠CBG,
∴∠EBG=∠EBC+∠CBG=∠EBC+∠ABE=∠ABC=90°,
∴△EBG为等腰直角三角形,
∴∠BEG=∠BGE=45°,
∴∠BGE=∠CEG=45°,
∵∠GDB=∠EDC,
∴△BDG∽CDE,
∴,
∵BG=EG×cs45°=CE×cs45°×cs45°=,
∴,
∴CD=6
∴BC=BD+CD=3+6=9,
设BE=BG==x,
∴CE=2x,
在Rt△BEC中,由勾股定理得BC2=BE2+CE2,
即,
解得,
∴CE=,
故答案为:.
【点睛】本题考查图形旋转,构造等腰直角三角形,特殊角锐角三角函数,三角形全等判定与性质,等腰直角三角形判定与性质,相似三角形判定与性质,勾股定理,一元二次方程,直接开平方法解一元二次方程,掌握图形旋转,构造等腰直角三角形,特殊角锐角三角函数,三角形全等判定与性质,等腰直角三角形判定与性质,相似三角形判定与性质,勾股定理,一元二次方程,直接开平方法解一元二次方程是解题关键.
三、解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)
16. 计算:.
【答案】
【解析】
【分析】本题考查了实数的运算,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.先化简各式,然后再进行计算即可解答.
【详解】解:原式
.
17. 化简求值:,其中.
【答案】,1
【解析】
【详解】利用分式的混合运算法则进行化简,再将带入即可求解.
解:原式
,
当时,.
【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.
18. 某工厂进行厂长选拔,从中抽出一部分人进行筛选,其中有“优秀”,“良好”,“合格”,“不合格”.
(1)本次抽查总人数为 ,“合格”人数的百分比为 .
(2)补全条形统计图.
(3)扇形统计图中“不合格人数”的度数为 .
(4)在“优秀”中有甲乙丙三人,现从中抽出两人,则刚好抽中甲乙两人的概率为 .
【答案】(1)50人,;
(2)见解析 (3)
(4)
【解析】
【分析】(1)由优秀人数及其所占百分比可得总人数,根据百分比之和为1可得合格人数所占百分比;
(2)总人数乘以不合格人数所占百分比求出其人数,从而补全图形;
(3)用乘以样本中“不合格人数”所占百分比即可得出答案;
(4)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【小问1详解】
解:本次抽查的总人数为(人,
“合格”人数的百分比为,
故答案为:50人,;
【小问2详解】
解:不合格人数为:;
补全图形如下:
【小问3详解】
解:扇形统计图中“不合格”人数的度数为,
故答案为:;
【小问4详解】
解:列表如下:
由表知,共有6种等可能结果,其中刚好抽中甲乙两人的有2种结果,
所以刚好抽中甲乙两人的概率为.
故答案为:.
【点睛】本题考查了列表法或树状图法求概率、扇形统计图与条形统计图的关联,读懂统计图中的信息、画出树状图或列表是解题的关键.
19. 某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜1元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.
(1)求甲乙两种类型笔记本的单价.
(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?
【答案】(1)甲类型的笔记本单价为11元,乙类型的笔记本单价为12元
(2)最低费用为1101元
【解析】
【分析】(1)设甲类型的笔记本单价为x元,则乙类型的笔记本为元.列出方程即可解答;
(2)设甲类型笔记本购买了a件,最低费用为w,列出w关于a的函数,利用一次函数的增减性进行解答即可.
【小问1详解】
设甲类型的笔记本单价为x元,则乙类型的笔记本为元.
由题意得:
解得:
经检验是原方程的解,且符合题意.
∴乙类型的笔记本单价为:(元).
答:甲类型的笔记本单价为11元,乙类型的笔记本单价为12元.
【小问2详解】
设甲类型笔记本购买了a件,最低费用为w,则乙类型笔记本购买了件.
由题意得:.
∴.
.
∵,
∴当a越大时w越小.
∴当时,w最小,最小值为(元).
答:最低费用为1101元.
【点睛】此题考查了分式方程的应用,以及一次函数的应用,掌握分式方程的应用,以及一次函数的应用是解题的关键.
20. 如图,在单位长度为1的网格中,点O,A,B均在格点上,,,以O为圆心,为半径画圆,请按下列步骤完成作图,并回答问题:
①过点A作切线,且(点C在A的上方);
②连接,交于点D;
③连接,与交于点E.
(1)求证:为的切线;
(2)求的长度.
【答案】(1)画图见解析,证明见解析
(2)
【解析】
【分析】(1)根据题意作图,首先根据勾股定理得到,然后证明出,得到,即可证明出为的切线;
(2)首先根据全等三角形的性质得到,然后证明出,利用相似三角形的性质求解即可.
【小问1详解】
如图所示,
∵是的切线,
∴,
∵,,
∴,
∵,,
∴,
∴,
又∵,,
∴,
∴,
∴,
∵点D在上,
∴为的切线;
【小问2详解】
∵,
∴,
∵,,
∴,
∴,即,
∴解得.
【点睛】此题考查了格点作图,圆切线的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.
21. 蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.
如图1,某个温室大棚的横截面可以看作矩形和抛物线构成,其中,,取中点,过点作线段的垂直平分线交抛物线于点,若以点为原点,所在直线为轴,为轴建立如图所示平面直角坐标系.请回答下列问题:
(1)如图2,抛物线的顶点,求抛物线的解析式;
(2)如图3,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置,,若,求两个正方形装置的间距的长;
(3)如图4,在某一时刻,太阳光线透过点恰好照射到点,此时大棚截面的阴影为,求的长.
【答案】(1)
(2)
(3)
【解析】
【分析】(1)根据题意得和,结合对称轴利用待定系数法即可求得解析式,
(2)根据题意得点的纵坐标为,即可求得点R的横坐标,结合题意得的横坐标,则有点的横坐标,即可求得;
(3)利用待定系数法求得直线的解析式为,根据题意设直线的解析式为,联立方程组得,由于抛物线与直线相切,则有,解得m,即可求得.
【小问1详解】
解:抛物线的顶点坐标为,且经过点,
设抛物线的解析式为,
将点代入得,解得,
抛物线的函数解析式为:;
【小问2详解】
∵,
∴点的纵坐标为,
将代入得,
解得,(舍),
的横坐标为1,
四边形是正方形,
的横坐标为,
点的横坐标为,
;
【小问3详解】
如图,取最右侧光线与抛物线切点为,
设直线的解析式为,将点及点代入,
得,
解得,
直线的解析式为:,
设直线的解析式为:,
由得,即,
抛物线与直线相切,
该方程有两个相等的实数根,
,
解得,
直线的解析式为:,
令直线中的得,
即,
.
【点睛】本题主要考查二次函数的性质,涉及待定系数法求解析式、正方形的性质、解一元二次方程以及一元二次方程根的情况,解题的关键是熟练二次函数的性质和点的几何意义.
22. (1)【探究发现】如图①所示,在正方形中,为边上一点,将沿翻折到处,延长交边于点.求证:
(2)【类比迁移】如图②,在矩形中,为边上一点,且将沿翻折到处,延长交边于点延长交边于点且求的长.
(3)【拓展应用】如图③,在菱形中,,为边上的三等分点,将沿翻折得到,直线交于点求的长.
【答案】(1)见解析;(2);(3)的长为或
【解析】
【分析】(1)根据将沿翻折到处,四边形是正方形,得,,即得,可证;
(2)延长,交于,设,在中,有,得,,由,得,,,而,,可得,即,,设,则,因,有,即解得的长为;
(3)分两种情况:(Ⅰ)当时,延长交于,过作于,设,,则,,由是的角平分线,有①,在中,②,可解得,;
(Ⅱ)当时,延长交延长线于,过作交延长线于,同理解得,.
【详解】证明:(1)将沿翻折到处,四边形是正方形,
,,
,
,,
;
(2)解:延长,交于,如图:
设,
在中,,
,
解得,
,
,,
,
,即,
,,
,,
,,
,即,
,
设,则,
,
,
,即,
解得,
的长为;
(3)(Ⅰ)当时,延长交于,过作于,如图:
设,,则,
,
,
,
,
沿翻折得到,
,,,
是的角平分线,
,即①,
,
,,,
在中,,
②,
联立①②可解得,
;
(Ⅱ)当时,延长交延长线于,过作交延长线于,如图:
同理,
,即,
由得:,
可解得,
,
综上所述,的长为或.
【点睛】本题考查四边形的综合应用,涉及全等三角形的判定,相似三角形的判定与性质,三角形角平分线的性质,勾股定理及应用等知识,解题的关键是方程思想的应用.甲
乙
丙
甲
(乙,甲)
(丙,甲)
乙
(甲,乙)
(丙,乙)
丙
(甲,丙)
(乙,丙)
广东省深圳市翠园文锦中学2023-2024学年九年级下学期2月月考数学试题(含答案): 这是一份广东省深圳市翠园文锦中学2023-2024学年九年级下学期2月月考数学试题(含答案),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省深圳市翠园文锦中学+2023-2024+学年九年级下学期2月++数学学情检测试卷+: 这是一份广东省深圳市翠园文锦中学+2023-2024+学年九年级下学期2月++数学学情检测试卷+,共8页。
2023-2024学年广东省深圳市翠园初级中学八上数学期末调研试题含答案: 这是一份2023-2024学年广东省深圳市翠园初级中学八上数学期末调研试题含答案,共6页。试卷主要包含了下列各分式中,最简分式是,有下列五个命题等内容,欢迎下载使用。