所属成套资源:北师大版数学九年级上册 教学课件
北师大版数学九年级上册 2.1 第1课时 一元二次方程课件
展开
这是一份北师大版数学九年级上册 2.1 第1课时 一元二次方程课件,共22页。
2.1 认识一元二次方程第二章 一元二次方程第1课时 一元二次方程1.理解一元二次方程的概念.(难点)2.根据一元二次方程的一般形式,确定各项系数.3.理解并灵活运用一元二次方程概念解决有关问题.(重点)复习引入没有未知数代数式一元一次方程二元一次方程不等式分式方程导入新课2.什么叫方程?我们学过哪些方程?含有未知数的等式叫做方程.我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.3.什么叫一元一次方程? 含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程.问题1:幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2 的地毯 ,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?解:如果设所求的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:(8 - 2x)(5 - 2x)xx(8 – 2x)xx(5 – 2x)( 8 - 2x)( 5 - 2x)= 18.化简:2x2 - 13x + 11 = 0 .①该方程中未知数的个数和最高次数各是多少?讲授新课问题2:观察下面等式:102 + 112 + 122 = 132 + 142 你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?解:如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为: , , , . 根据题意,可得方程: x+1x+2x+3x+4x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2.化简得,x2 - 8x - 20=0. ②该方程中未知数的个数和最高次数各是多少?解:由勾股定理可知,滑动前梯子底端距墙 m.如果设梯子底端滑动x m ,那么滑动后梯子底端距墙 m ,根据题意,可得方程:问题3:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?6x+672 + (x + 6)2 = 102.化简得,x2 + 12 x - 15 = 0. ③10m8m1mxm该方程中未知数的个数和最高次数各是多少?① 2x2 - 13x + 11 = 0 ;② x2 - 8x - 20=0;③ x2 + 12 x - 15 = 0.1.只含有一个未知数; 2.未知数的最高次数是2;3.整式方程. 观察与思考方程①、 ②、 ③都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点: 只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数, a≠0)的形式,这样的方程叫做一元二次方程.ax2+bx +c = 0(a , b , c为常数, a≠0)ax2 称为二次项, a 称为二次项系数. bx 称为一次项, b 称为一次项系数. c 称为常数项.知识要点一元二次方程的概念 一元二次方程的一般形式是想一想 为什么一般形式中ax2+bx+c=0要限制a≠0,b、c 可以为零吗?当 a = 0 时bx+c = 0 当 a ≠ 0 , b = 0时 ,ax2+c = 0 当 a ≠ 0 , c = 0时 ,ax2+bx = 0 当 a ≠ 0 ,b = c =0时 ,ax2 = 0 总结:只要满足a ≠ 0 ,b , c 可以为任意实数.典例精析C不是整式方程含两个未知数化简整理成x2-3x+2=0少了限制条件a≠0 判断下列方程是否为一元二次方程?(2) x3+ x2=36(3)x+3y=36(5) x+1=0(1) x2+ x=36例2:a为何值时,下列方程为一元二次方程?(1)ax2-x=2x2(2) (a-1)x |a|+1 -2x-7=0.解:(1)将方程式转化为一般形式,得(a-2)x2-x=0,所以当a-2≠0,即a≠2时,原方程是一元二次方程; (2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方程是一元二次方程.方法点拨:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值.变式:方程(2a-4)x2-2bx+a=0, (1)在什么条件下此方程为一元二次方程?(2)在什么条件下此方程为一元一次方程?解(1)当 2a-4≠0,即a ≠2 时是一元二次方程(2)当a=2 且 b ≠0 时是一元一次方程思考:一元一次方程与一元二次方程有什么区别与联系?ax=b (a≠0)ax2+bx+c=0 (a≠0)整式方程,只含有一个未知数未知数最高次数是1未知数最高次数是2 例3:将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般形式3x2-8x-10=0. 其中二次项是3x2,系数是3;一次项是-8x,系数是-8;常数项是-10. 1. 下列哪些是一元二次方程?√×√××√3x+2=5x-2x2=0(x+3)(2x-4)=x23y2=(3y+1)(y-2)x2=x3+x2-13x2=5x-1当堂练习2.填空:-21313-540-53-23.关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,当k 时,是一元二次方程.当k 时,是一元一次方程.≠±1=-14.(1) 如图,已知一矩形的长为200cm,宽150cm.现在矩形中挖去一个圆,使剩余部分的面积为原矩形面积的四分之三.求挖去的圆的半径xcm应满足的方程(其中π取3).解:设由于圆的半径为xcm,则它的面积为 3x2 cm2.整理,得根据题意有,200cm150cm(2) 如图,据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆.求该市两年来汽车拥有量的年平均增长率x应满足的方程.解:该市两年来汽车拥有量的年平均增长率为x整理,得根据题意有,一元二次方程概念是整式方程;含一个未知数;最高次数是2.一般形式ax2+bx+c=0 (a ≠0) 其中(a≠0)是一元二次方程的必要条件;课堂小结