- (新高考)高考数学一轮复习学案+巩固提升练习2.10《函数模型的应用》(2份打包,原卷版+教师版) 试卷 0 次下载
- (新高考)高考数学一轮复习学案+巩固提升练习3.1《导数的概念及其意义、导数的运算》(2份打包,原卷版+教师版) 试卷 0 次下载
- (新高考)高考数学一轮复习学案+巩固提升练习3.3《导数与函数的极值、最值》(2份打包,原卷版+教师版) 试卷 0 次下载
- (新高考)高考数学一轮复习学案+巩固提升练习3.6《利用导数证明不等式》(2份打包,原卷版+教师版) 试卷 0 次下载
- (新高考)高考数学一轮复习学案+巩固提升练习3.8《隐零点与极值点偏移问题培优课》(2份打包,原卷版+教师版) 试卷 0 次下载
(新高考)高考数学一轮复习学案+巩固提升练习3.2《导数与函数的单调性》(2份打包,原卷版+教师版)
展开1.结合实例,借助几何直观了解函数的单调性与导数的关系.
2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
知识梳理
1.函数的单调性与导数的关系
2.利用导数判断函数单调性的步骤
第1步,确定函数的定义域;
第2步,求出导数f′(x)的零点;
第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.
常用结论
1.若函数f(x)在(a,b)上单调递增,则x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则x∈(a,b)时,f′(x)≤0恒成立.
2.若函数f(x)在(a,b)上存在单调递增区间,则x∈(a,b)时,f′(x)>0有解;若函数f(x)在(a,b)上存在单调递减区间,则x∈(a,b)时,f′(x)<0有解.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )
(2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内单调递减.( )
(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.( )
(4)函数f(x)=x﹣sin x在R上是增函数.( )
教材改编题
1.f′(x)是f(x)的导函数,若f′(x)的图象如图所示,则f(x)的图象可能是( )
2.函数f(x)=(x﹣2)ex的单调递增区间为________.
3.若函数f(x)=eq \f(1,3)x3﹣eq \f(3,2)x2+ax+4的单调递减区间为[﹣1,4],则实数a的值为________.
题型一 不含参数的函数的单调性
例1 (1)函数f(x)=x2﹣2ln x的单调递减区间是( )
A.(0,1) B.(1,+∞) C.(﹣∞,1) D.(﹣1,1)
(2)若函数f(x)=eq \f(ln x+1,ex),则函数f(x)的单调递减区间为________.
教师备选
若幂函数f(x)的图象过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),\f(1,2))),则函数g(x)=eq \f(fx,ex)的单调递增区间为( )
A.(0,2) B.(﹣∞,0)∪(2,+∞)
C.(﹣2,0) D.(﹣∞,﹣2)∪(0,+∞)
思维升华 确定不含参的函数的单调性,按照判断函数单调性的步骤即可,但应注意一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.
跟踪训练1
(1)已知定义在区间(0,π)上的函数f(x)=x+2cs x,则f(x)的单调递增区间为____________.
(2)函数f(x)=(x﹣1)ex﹣x2的单调递增区间为________,单调递减区间为________.
题型二 含参数的函数的单调性
例2 已知函数f(x)=eq \f(1,2)ax2﹣(a+1)x+ln x,a>0,试讨论函数y=f(x)的单调性.
延伸探究 若将本例中参数a的范围改为a∈R,其他条件不变,试讨论f(x)的单调性?
教师备选
讨论下列函数的单调性.
(1)f(x)=x﹣aln x; (2)g(x)=(x﹣a﹣1)ex﹣(x﹣a)2.
思维升华
(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.
(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.
跟踪训练2 已知函数f(x)=x﹣eq \f(2,x)+a(2﹣ln x),a>0.讨论f(x)的单调性.
题型三 函数单调性的应用
命题点1 比较大小或解不等式
例3 (1)已知函数f(x)=xsin x,x∈R,则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5))),f(1),f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))的大小关系为( )
A.f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))>f(1)>f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5))) B.f(1)>f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))>f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5)))
C.f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5)))>f(1)>f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3))) D.f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))>f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5)))>f(1)
(2)已知函数f(x)=ex﹣e﹣x﹣2x+1,则不等式f(2x﹣3)>1的解集为________.
命题点2 根据函数的单调性求参数的范围
例4 已知函数f(x)=eq \f(1,2)x2+2ax﹣ln x,若f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),2))上单调递增,则实数a的取值范围为________.
延伸探究 在本例中,把“f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),2))上单调递增”改为“f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),2))上存在单调递增区间”,求a的取值范围.
教师备选
1.若函数f(x)=ex(sin x+a)在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2)))上单调递增,则实数a的取值范围是( )
A.(1,+∞) B.[2,+∞) C.[1,+∞) D.(﹣eq \r(2),+∞)
2.若函数f(x)=ax3+x恰有3个单调区间,则a的取值范围为________.
思维升华 根据函数单调性求参数的一般思路
(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.
(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0(f′(x)≤0),且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.
(3)函数在某个区间上存在单调区间可转化为不等式有解问题.
跟踪训练3
(1)已知定义域为R的连续函数f(x)的导函数为f′(x),且满足eq \f(f′x,mx-3)<0,当m<0时,下列关系中一定成立的是( )
A.f(1)+f(3)=2f(2) B.f(0)·f(3)=0
C.f(4)+f(3)<2f(2) D.f(2)+f(4)>2f(3)
(2)函数f(x)=eq \f(ln x,x)在(a,a+1)上单调递增,则实数a的取值范围为________.
课时精练
1.函数f(x)=xln x+1的单调递减区间是( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,\f(1,e))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e),+∞)) C.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,e))) D.(e,+∞)
2.已知函数f(x)=x(ex﹣e﹣x),则f(x)( )
A.是奇函数,且在(0,+∞)上单调递减
B.是奇函数,且在(0,+∞)上单调递增
C.是偶函数,且在(0,+∞)上单调递减
D.是偶函数,且在(0,+∞)上单调递增
3.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数).下面四个图象中y=f(x)的图象大致是( )
4.若函数f(x)=﹣x2+4x+bln x在区间(0,+∞)上是减函数,则实数b的取值范围是( )
A.[﹣1,+∞) B.(﹣∞,﹣1]
C.(﹣∞,﹣2] D.[﹣2,+∞)
5.(多选)如果函数f(x)对定义域内的任意两实数x1,x2(x1≠x2)都有eq \f(x1fx1-x2fx2,x1-x2)>0,则称函数y=f(x)为“F函数”.下列函数不是“F函数”的是( )
A.f(x)=ex B.f(x)=x2 C.f(x)=ln x D.f(x)=sin x
6.(多选)下列不等式成立的是( )
A.2ln eq \f(3,2)
7.已知函数f(x)=eq \f(1,3)x3+mx2+nx+1的单调递减区间是(﹣3,1),则m+n的值为________.
8.写出一个同时具有下列性质①②③的函数f(x):________.
①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.
9.已知函数f(x)=eq \f(1,2)x2﹣2aln x+(a﹣2)x.
(1)当a=﹣1时,求函数f(x)的单调区间;
(2)若函数g(x)=f(x)﹣ax在(0,+∞)上单调递增,求实数a的取值范围.
10.已知函数f(x)=eq \f(x2+ax+a,ex),a∈R.
(1)若f(x)在x=1处的切线与直线y=x﹣1垂直,求a的值;
(2)讨论f(x)的单调性.
11.若函数h(x)=ln x﹣eq \f(1,2)ax2﹣2x在[1,4]上存在单调递减区间,则实数a的取值范围为( )
A.eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(7,16),+∞)) B.(﹣1,+∞) C.[﹣1,+∞) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(7,16),+∞))
12.设函数f(x)=cs x+eq \f(1,2)x2,若a=f( SKIPIF 1 < 0 ),b=f(lg52),c=f(e0.2),则a,b,c的大小关系为( )
A.b13.函数f(x)=2sin x﹣cs 2x,x∈[﹣π,0]的单调递增区间为________________.
14.设函数f(x)=ln(x+a)+x2.若f(x)为定义域上的单调函数,则实数a的取值范围为________.
15.设函数f(x)=sin x+ex﹣e﹣x﹣x,则满足f(x)+f(5﹣3x)<0的x的取值范围为( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,4),+∞)) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,\f(5,4))) C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2),+∞)) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,\f(5,2)))
16.已知函数f(x)=eq \f(aex,x).
(1)若a>0,求f(x)的单调区间;
(2)若对∀x1,x2∈[1,3],x1≠x2都有eq \f(fx1-fx2,x1-x2)<2恒成立,求实数a的取值范围.
条件
恒有
结论
函数y=f(x)在区间(a,b)上可导
f′(x)>0
f(x)在区间(a,b)上单调递增
f′(x)<0
f(x)在区间(a,b)上单调递减
f′(x)=0
f(x)在区间(a,b)上是常数函数
(新高考)高考数学一轮复习学案+巩固提升练习3.6《利用导数证明不等式》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+巩固提升练习3.6《利用导数证明不等式》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习36《利用导数证明不等式》原卷版doc、新高考高考数学一轮复习讲义+巩固练习36《利用导数证明不等式》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习36《利用导数证明不等式》教师版doc、新高考高考数学一轮复习讲义+巩固练习36《利用导数证明不等式》教师版pdf等4份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
(新高考)高考数学一轮复习学案+巩固提升练习3.3《导数与函数的极值、最值》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+巩固提升练习3.3《导数与函数的极值、最值》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》原卷版doc、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》教师版doc、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》教师版pdf等4份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
(新高考)高考数学一轮复习学案+巩固提升练习1.1《集合》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+巩固提升练习1.1《集合》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习11《集合》原卷版doc、新高考高考数学一轮复习讲义+巩固练习11《集合》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习11《集合》教师版doc、新高考高考数学一轮复习讲义+巩固练习11《集合》教师版pdf等4份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。