所属成套资源:2024届高考物理二轮专题复习资料
2024届高考物理二轮专题: 静电场中的能量
展开
这是一份2024届高考物理二轮专题: 静电场中的能量,共23页。试卷主要包含了选择题,多项选择题,非选择题等内容,欢迎下载使用。
1.(2023高三下·深圳模拟)如图所示,在匀强电场中的O点固定一点电荷+Q,a、b、c、d、e、f为以O点为球心的同一球面上的点,aecf平面与电场线平行,bedf平面与电场线垂直,下列判断中正确的是( )
A.a、c两点电势相等
B.b、d两点的电场强度相同
C.将点电荷+q从球面上b点移到e点,电场力做功为零
D.将点电荷+q从球面上a点移到c点,电场力做功为零
2.(2023高考模拟·温州)如图甲所示为粒子直线加速器原理图,它由多个横截面积相同的同轴金属圆筒依次组成,序号为奇数的圆筒与序号为偶数的圆筒分别和交变电源相连,交变电源两极间的电势差的变化规律如图乙所示。在 t=0 时,奇数圆筒比偶数圆筒电势高,此时和偶数圆筒相连的金属圆板(序号为0)的中央有一自由电子由静止开始在各间隙中不断加速。若电子的质量为m,电荷量为e,交变电源的电压为U,周期为T。不考虑电子的重力和相对论效应,忽略电子通过圆筒间隙的时间。下列说法正确的是( )
A.电子在圆筒中也做加速直线运动
B.电子离开圆筒1时的速度为 2Uem
C.第n个圆筒的长度应满足 Ln=TnUe2m
D.保持加速器筒长不变,若要加速比荷更大的粒子,则要调大交变电压的周期
3.(2023高三下·汉寿模拟)AB、CD两块正对的平行金属板与水平面成30°角固定,竖直截面如图所示。两板间距10cm,电荷量为1.0×10−8C、质量为3.0×10−4kg的小球用长为5cm的绝缘细线悬挂于A点。闭合开关S,小球静止时,细线与AB板夹角为30°;剪断细线,小球运动到CD板上的M点(未标出),则( )
A.MC距离为53cmB.电势能增加了343×10−4J
C.电场强度大小为3×104N/CD.减小R的阻值,MC的距离将变大
4.(2023高三下·浙江模拟)如图所示,不带电,长为l的导体棒水平放置,现将一个电荷量为+q(q>0)的点电荷放在棒的中心轴线上距离棒的左端R处,A、B分别为导体棒左右两端的一点,静电力常量为k。当棒达到静电平衡后,下列说法正确的是( )
A.棒的两端都感应出负电荷
B.感应电荷在棒的中心O处产生的电场强度方向水平向右
C.感应电荷在棒的中心O处产生的电场强度大小E=kqR+0.5l
D.若用一根导线将A、B相连,导线上不会产生电流
5.(2023·临海模拟)如图所示的平行板电容器竖直放置,两极板间的距离为d,极板高度AB=CD=ℎ,对该电容器充上一定的电量后,将一带电小球P从非常靠近左极板的上端A处由静止释放,小球沿图中虚线运动打到了右极板的中点,为使小球能够从下方穿过电容器,右极板向右至少移动的距离为( )
A.d B.(2−1)dC.ℎ2dD.d2ℎ
6.(2023·深圳模拟)我国科研人员采用全新发电方式——“爆炸发电”,以满足高耗能武器的连续发射需求。其原理如图所示,爆炸将惰性气体转化为高速等离子体,射入磁流体动力学发生器,发生器的前后有两强磁极N和S,使得上下两金属电极之间产生足够高电压,下列说法正确的是( )
A.上极板电势比下极板电势低
B.仅使L增大,两金属电极间的电动势会变大
C.仅使d增大,两金属电极间的电动势会变大
D.仅使b增大,两金属电极间的电动势会变大
7.(2023·浙江模拟)传感器是一种采集信息的重要器件,图为测定压力的电容式传感器,将电容器、灵敏电电流表、电源连接.施加力的作用使电极发生形变,引起电容的变化,导致灵敏电流计指针偏转.在对膜片开始施加恒定的压力到膜片稳定,灵敏电流表指针的偏转情况为(电流从电流表正接线柱流入时指针向右偏)
A.向右偏到某一刻度后不动
B.向左偏到某一刻度后不动
C.向右偏到某一刻度后回到零刻度
D.向左偏到某一刻度后回到零刻度
8.(2023·浙江模拟)如图所示为某示波管内一个平面的聚焦电场,实线和虚线分别表示电场线和等差等势线,a、b、c三点分别是电场线与等势线的交点。两个电子分别从a、b两点运动到c点,Wac和Wbc分别表示两电子从a、b两点运动到c点时电场力做的功,下列说法正确的是( )
A.Wac=Wbc
B.电子在b点的电势能小于在c点的电势能
C.电子在电场中b点的加速度大于a点的加速度
D.两电子从电场中某点获得瞬间冲量后,不可能沿电场线运动
9.(2023·渭南模拟)在A、B两点放置电荷量分别为+q1和−q2的点电荷,其形成的电场线分布如图所示,C为A、B连线的中点,D是AB连线的中垂线上的另一点。则下列说法正确的是( )
A.q1x2区域电场强度沿x轴正方向
D.一带负电试探电荷从O处移到x2处,电势能先减小后增加
25.(2023·重庆市模拟)如图所示,真空中的带负电的两个点电荷位于x轴上的A、B两点,它们相距4L,O点为AB的连线中点。一电子在AB连线间靠近A点的某点从静止释放后,在AB间做往复运动,且经过C点时动能最大,已知两点电荷电量之比Q1:Q2=4:1,则下列说法正确的是( )
A.电子经过O点时的加速度为0
B.AC点间距离为83L
C.电子从A向B运动过程中电势能一直减小
D.C点电势比O点电势高
26.(2023·云南模拟)如图,四个等量点电荷分别固定在平面内一菱形的四个顶点上,θ=60°,电性如图中所示,A、B、C、D分别为四条边的中点,下列说法正确的是( )
A.A点的场强小于D点的场强
B.B点的电势等于C点的电势
C.电子在A点的电势能小于在O点的电势能
D.质子从B点沿直线BC移动到C点,电势能先增大再减小
27.(2023·云南模拟)如图,圆心为O、半径为R的圆形区域内存在一个平行于该区域的匀强电场,MN为圆的一条直径。质量为m、电荷量为+q的粒子从M点以速度v射入电场,速度方向与MN夹角θ=45°,一段时间后粒子运动到N点,速度大小也为v,不计粒子重力,规定M点电势为0。下列说法正确的是( )
A.场强大小为mv22qR
B.粒子电势能的最大值为14mv2
C.仅改变粒子速度大小,粒子离开圆形区域时电势能的最小值为−mv2
D.仅改变粒子速度大小,当粒子离开圆形区域的电势能最小时,粒子射入电场的速度大小为v2
28.(2023·赣州模拟)两个质量相等、电荷量不等的带电粒子甲、乙,以不同的速率从S点沿直径SO方向垂直射入水平向右的匀强电场,它们在圆形区域中运动的时间相同,其运动轨迹如图所示,乙粒子运动轨迹与圆形区域的交点恰好在水平直径AOB最左端的A点。不计粒子的重力,则下列说法中正确的是( )
A.甲粒子带负电
B.甲粒子所带的电荷量比乙粒子少
C.在圆形区域运动过程中,甲粒子动量变化小
D.在圆形区域运动过程中,甲粒子电势能变化大
29.(2023·济宁模拟)如图所示,空间中有一正方体abcd—a'b'c'd',在b点固定点电荷+Q,在d点固定点电荷-Q,O、O'分别为上下两面的中心点,下列说法正确的是( )
A.a点与c'点的电场强度方向相同
B.b'、a'两点间电势差等于O'、d'两点间电势差
C.将某点电荷+q由a'点沿a'c'移至c'点,该电荷的电场力先变大后变小
D.将某点电荷+q由a'点沿a'c'移至c'点,该电荷的电势能先变大后变小
30.(2023·山东模拟)如图,圆心为O、半径为r的圆处在一匀强电场中,电场强度方向与圆平面平行,ab为圆的直径,c为圆周上另外一点,ab与ac的夹角为α=60°。电荷量为q(q>0)的同种带电粒子从O点先后以相同的动能Ek、不同的速度方向发射,发现从圆周上的c点射出的粒子动能最大,最大值为3Ek,粒子仅受电场力作用。下列说法正确的是( )
A.该匀强电场的方向与ac平行
B.该匀强电场的场强大小为2Ekqr
C.O、a两点间的电势差为Ek2q
D.把一电荷量为q的负电荷从b点移到c点,电场力做的功为−3Ek
31.(2023·湖南模拟)如图所示为某汽车上的加速度电容传感器的俯视图。质量块左、右侧分别连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质相对于外框无摩擦左右移动,电容器与供电电源连接,并串联计算机的信号采集器。下列关于该传感器的说法正确的是( )
A.电介质插入极板间越深,则电容器电容越大
B.在汽车向右匀加速直线运动过程中电路中有电流
C.在汽车向左匀速直线运动过程中电路中有电流
D.在汽车向右做加速度增大的加速运动过程中,电路中有顺时针方向的充电电流
三、非选择题
32.(2023高三下·杭州模拟) 如图,为某一粒子分离收集装置,间距d=3cm的PQ两平行绝缘板之间为初始粒子通道,O′O为中轴线,工作时会有大量带电粒子或仅沿着中轴线通过该通道,或平行于中轴线通过整个通道。如果需要,整个通道还可以绕O点在纸面内转动,其右侧分布着垂直于纸面向外的单边界水平磁场,磁感应强度为B=0.1T,磁场区域在竖直方向和右边足够大,O点为通道中轴线与磁场左边界的交点,初始中轴线垂直于边界。在左边界放置足够大单向滤网板,带电粒子可以从左向右无影响的穿过滤网板,但是从右向左带电粒子无法穿越,从右向左遇到单向滤网板会被滤网板挡住且收集,可以视为收集板。PQ平行板的右端与磁场左边界有足够距离,以O点为坐标原点,沿边界竖直向上为y轴正方向,水平向右为x轴正方向,建立坐标系。现有大量速度都为v=105m/s的11H、12H粒子,从左端进入通道,实施试验。已知11H的质量为m=1.6×10−27kg,12H的质量为2m,它们的带电量都为e=1.6×10−19C,不计粒子在通道内的运动时间,粒子离开通道后可以继续匀速直线前进,直至进入磁场。不计粒子重力和粒子间的相互影响。
(1)第一次试验,通道不转动,带电粒子仅沿着中轴线通过通道,求11H在收集板上的落点位置(用y坐标表示);
(2)第二次试验,整个通道绕O点在纸面内缓慢转动,转动范围为中轴线与水平方向的夹角为θ(θ≤90°)的上下对称区域,带电粒子始终沿着中轴线通过通道,为了使11H、12H粒子在收集板上不重叠,求转动角θ的最大值;
(3)第三次试验,通道在上下对称区域内缓慢转动,最大转动角θ=60°,带电粒子始终平行于中轴线通过整个通道,求11H、12H粒子在收集板上的重叠区间。
33.(2023高三下·深圳模拟)离子约束技术对实现可控核聚变有着决定性作用。某离子束实验装置的基本原理如图甲所示,在半径为R的圆柱体底面建立空间直角坐标系,坐标原点与圆柱底面圆心重合。圆柱体区域内存在沿z轴负方向、电场强度为E的匀强电场,圆柱区域正上方存在沿x轴负方向、磁感应强度为B0的匀强磁场。如图乙所示,从离子源不断飘出(不计初速度)电荷量为q、质量为m的正离子,经电场加速后从圆柱边界正上方沿y轴负方向进入磁场,恰好在圆柱顶面圆心处与y轴正方向成θ=45°角斜向下射出磁场,进入圆柱区域内的电场中,最后落在圆柱底面上坐标为(0,R,0)的D点(图中未画出),不计离子重力。
(1)求加速装置的电压U;
(2)若已知E=2qB02Rm,求圆柱体区域的高度h;
(3)若将圆柱体区域(含边界)的电场,换成一个沿z轴负方向的匀强磁场,且知圆柱区域高度为ℎ=3πR。为使离子都能到达圆柱底面,并在O点“聚焦”,则磁感应强度B应为多大?
34.(2023高考模拟·温州)如图所示,足够大的光滑水平地面上有一水平直角坐标系,第一、二和四象限存在垂直纸面向里的匀强磁场,磁感应强度为 B0 , AO 和 OC 为光滑挡板,A点坐标为 (−l,0) ,足够长的 OC 挡板与x轴夹角为 30° 。第三象限内一个电荷量为q、质量为m的可视为质点的带正电小球,以某一速度沿直线运动通过相互垂直的电场和磁场后,从A点垂直x轴进入第二象限,小球与 AO 挡板的碰撞为弹性碰撞;小球与 OC 挡板碰撞后反弹,垂直挡板方向的速度大小减为碰前的二分之一,平行挡板方向的速度不变,碰撞过程中小球电荷量保持不变。已知第三象限内的电场强度与磁感应强度的比值为 B0ql3m 。求
(1)小球从A点进入磁场到第一次撞击 OC 挡板所用的时间及第一次撞击点坐标;
(2)小球打在 OC 挡板上离坐标原点的最远距离 dm ;
(3)当小球打在 OC 挡板上离坐标原点最远位置时,将 B0 方向反向(大小不变),同时加一个沿y轴负方向的匀强电场E,此后小球沿y轴负方向运动的最大距离h(用m,E, B0 ,q表示)。
35.(2023·深圳模拟)某肿瘤治疗新技术是通过电子撞击目标靶,使目标靶放出X射线,对肿瘤进行准确定位,再进行治疗,其原理如图所示。圆形区域内充满垂直纸面的匀强磁场,磁感应强度为B。水平放置的目标靶长为2l,靶左端M与磁场圆心O的水平距离为l、竖直距离为3l。从电子枪逸出的电子(质量为m、电荷量为e,初速度可以忽略)经匀强电场加速时间t后,以速度v0沿PO方向射入磁场,(PO与水平方向夹角为60°),恰好击中M点,求:
(1)匀强电场场强的大小;
(2)匀强磁场的方向及电子在磁场中运动的时间;
(3)为保证电子击中目标靶MN,匀强电场场强的大小范围(匀强电场极板间距不变)。
36.(2023·广东模拟)如图甲是一种利用磁场约束离子运动的装置原理图,内、外半径分别为R和3R的圆筒共轴放置,轴线OO′水平,在轴线正下方是一对平行金属板,上板正中间的小孔a与外筒正中间的小孔b在通过轴线的同一竖直线上,a、b间距离为d、两筒之间分布着以轴为圆心的同心磁场,各处磁感应强度大小近似相等,磁感应强度为B,从右往左看截面如图乙所示。在平行板下板中央的一个质量为m、电量为e的氢离子(11H)从静止加速经小孔a从小孔b进入磁场,在磁场中的轨迹恰好与内筒下边缘相切;一段时间后调节板间电压为原来的2倍,并让一个氘核(12H)在下极板同一位置从静止加速也进入磁场。已知离子与筒壁正碰后均原速反弹且碰撞时间极短,离子与筒壁接触其电荷量不变,筒壁光滑,忽略离子间的相互作用和它们在平行板间加速的时间。
(1)求加速氢离子时平行板间的电压U多大;
(2)分析氘核是否与内筒壁碰撞,如果与内筒壁碰撞,求它与内筒壁第一次碰撞的点P(未在图中画出)与小孔b的水平距离s的大小;
(3)若氢离子第一次与筒左侧壁垂直碰撞后沿直线返回,运动到P点时与氘核相遇,筒长L=20R,求氢、氘核释放的时间间隔。
37.(2023高三下·潮州模拟)如图所示,直角坐标系xOy所在竖直平面内,第一、二象限中分布着沿x轴负方向的匀强电场E1,第三、四象限中分布着沿y轴正方向的匀强电场E2;第三、四象限还分布着匀强磁场(图中未画出).一质量为m、带电量为q的正电小球自坐标为(0,L)的A点由静止出发,进入第三象限后恰能作匀速圆周运动并垂直于y轴射入第四象限,已知E1=mgq,重力加速度为g.求:
(1)小球第一次通过x轴时的速度;
(2)匀强电场场强E2和匀强磁场磁感应强度B大小的比值;
(3)小球从第四象限穿出后,经过一段时间会再次到达x轴上的N点(图中未标出),求小球从出发运动至N的时间tAN.
38.(2023·山西模拟)在足够大空间存在竖直向下的匀强电场E,一质量为m、电量为q的带电粒子从某点以速度v0平抛,若匀强电场空间足够大,粒子所受重力忽略。
(1)求粒子在运动过程中速度方向与位移方向夹角正弦的最大值。
(2)如图,斜面倾角为45°,带电粒子在斜面底端正上方h处,若粒子水平初速度大小可变化,求粒子落在斜面上动能的最小值。
39.(2023·东阳模拟)如图甲所示,真空中存在一间距为d=0.02m的水平平行板电容器,板长L=0.04m,板间电压为U、板间匀强电场方向向上,MN为一垂直上极板PQ的足能长的光屏,其下端N与极板右端Q重合,在MN所在竖直线右侧空间存在匀强磁场。在下极板左端有一个粒子源A,可以紧贴极板水平向右连续发射带正电的粒子,粒子比荷为qm=1×108C/kg,初速度v0=1×105m/s。已知粒子打到极板或光屏时会被吸收,粒子之间的作用力不计,粒子的重力不计。
(1)为使粒子能够从极板间射出,求电压U的最大值;
(2)若匀强磁场方向垂直纸面向里(如图甲),大小为B1=0.05T,电压U可任意调节,则求粒子击中光屏形成痕迹的长度ΔL;
(3)若匀强磁场方向改成水平向右,大小变为B2=320T,电压U可任意调节,在极板右侧放置另一块与MN平行的足够大的光屏CD,CD在磁场中能左右移动,则求粒子打在光屏CD上留下所有痕迹的面积S;
(4)在满足第(3)问的条件下,同时在电容器的右侧与光屏之间加一水平向右的匀强电场,其场强大小E=33π×104N/C,在光屏上以D点原点(D点为光屏与FG直线的交点),垂直纸面向内为x轴,竖直向上为y轴,水平向右的方向为z轴,建立如图乙所示的三维直角坐标系xyz。光屏位置到G点的距离用K表示,现将光屏CD沿FG直线从G点开始从近到远依次放在不同位置上,光屏CD始终平行MN,当光屏距G点为K1与K2这两个位置时打在光屏上所有粒子的点迹首次先后出现如图丙、丁所示的两条直线(顺着匀强电场E,水平向右看光屏),其中图丙为距离K1时的图样,图丁为距离K2时的图样,则K1与K2这两位置相距多少距离?
40.(2023·安徽模拟)如图甲所示,长为L的平行金属板M、N上加有如图乙所示的交变电压,图乙中U0、T均已知,在过两板右端的虚线右侧有垂直于纸面向里足够大的匀强磁场,在两板中线左端有一粒子源,可以不断地从粒子源内沿两板间中线向右射出质量为m,电荷量为q的带正电的粒子,粒子射出的速度大小为LT,从t=0时刻射人的粒子恰好从N板右端附近射出,此粒子经磁场偏转后又恰好不能再进入两板间电场,不计粒子的重力和粒子间的相互作用,求:
(1)M、N板间的距离;
(2)匀强磁场的磁感应强度大小;
(3)匀强磁场中所有粒子通过的区域的面积大小。
41.(2023·安徽模拟)如图所示,坐标系xOy的第一象限存在匀强磁场,磁场方向垂直于xOy平面向外;第四象限内有沿x轴负方向的匀强电场。质量为m、带电量为q(q>0)的粒子以速率v从y轴的点A(0,3L)射入磁场,经x轴上的点C(L,0)沿y轴负方向进入电场,然后从y轴负半轴D点以与y轴负方向成60°角离开电场,不计粒子重力,求:
(1)粒子在A点时速度方向与y轴正方向的夹角θ;
(2)匀强电场的电场强度大小;
(3)粒子在电场和磁场中运动的总时间t。
相关试卷
这是一份2024届高考物理二轮专题: 静电场中的能量答案解析,共38页。试卷主要包含了选择题,多项选择题,非选择题等内容,欢迎下载使用。
这是一份新高考物理二轮专题 电学实验,共10页。
这是一份高考物理一轮复习【分层练习】 第13章 静电场中的能量,文件包含第十三章静电场中的能量教师版docx、第十三章静电场中的能量学生版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。