山东省烟台2023_2024高三数学上学期11月期中考试试题pdf
展开山东省烟台2023-2024高三上学期期中学业水平诊断
数学
注意事项:
1.本试题满分150分,考试时间为120分钟。
2.使用答题纸时, 必须使用0. 5毫米的黑色签字笔书写, 要字迹工整, 笔迹清晰; 超出 答题区书写的答案无效;在草稿纸、试题卷上答题无效。
3.答卷前将密封线内的项目填写清楚。
一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有 一项符合题目要求。
1.已知集合A={xl2x2 -3x-2 =0} , B={xly=占言言}, 则AnB=
A.{l} B. {2} C. {1,2} D. {-1,2}
2.若无穷等差数列{an }的公差为d,则 “ d>O"是 “ 3kEN.,ak >0 ” 的 A.充分不必要条件 B.必要不充分条件
c.充要条件 D.既不充分也不必要条件
3.已知函数f(x) ={-EQ \* jc3 \* hps16 \\al(\s\up 8(C),f)EQ \* jc3 \* hps16 \\al(\s\up 8(S),x)1tXEQ \* jc3 \* hps16 \\al(\s\up 5(,),2)EQ \* jc3 \* hps16 \\al(\s\up 8(<),x)l ,则八2023)的值为
1
A. -1 B. 0 C. i D.1
4.在平行四边形ABCD中,AB=32 ,AD= 2, EQ \* jc3 \* hps24 \\al(\s\up 10(-),AE)= LBAD=,则 EQ \* jc3 \* hps16 \\al(\s\up 11(一),AC)•
A. 2 B. 2五 D. 4 N
5.如图,某数学兴趣小组欲测量一 下校内旗杆顶部M和教学楼
M
顶部N之间的距离, 已知旗杆AM高15m,教学楼BN高21m,
在与A,B同一水平面C处测得的旗杆顶部M的仰角为30° '教学 A ----\--/---.)B
楼顶部N的仰角为60° , LACB=120 ° , 则M,N之间的距离为 c
A. 痀m B. 厮m C. 厮m D. 祠m 6.已知a = lg3 2, b= sin , c= e0.s,则a,b,c 的大小关系为
A. c>a>b B.c>b>a C. b>c>a D. b>a>c 7.斐波那 契 数 列 {a刀}以如下递归的方法定义:a1 =a2 =1 ,
an =an-I +an-2 (n > 3,n EN.) .若斐波那契数列{an }对任意neN·, 存在常数p,q ,
使得an'pan+2'qan+4 成等差数列, 则p-q的值为
1
A.1 B. 3 C. ..:.
2
高三数学试题(第1页, 共4页)
3
D. 一
2
高三数学参考答案
一、选择题:
1.B 2. A
二、选择题
9.ACD
三、填空题
13.
四、解答题
17.解:(1)由题知,
3. D 4.A 5.D 6.A 7.C 8.C
10.AB 11.BC 12.BCD
14. 8 15. 16. (−5, −4)
T π
=
2 2
,所以, T = π =
2π
ω
,所以, ω = 2 . ···················· 2 分
所以, f (x) = sin(2x + ) . ······························································ 3 分
π π π 3π π
所以, 2kπ − ≤ 2x + ≤ 2kπ + ,即 kπ − ≤ x ≤ kπ + , 4 分
2 4 2 8 8
3π π
故 f (x) 的单调递增区间为[kπ − , kπ + ](k ∈ Z) . ··································· 5 分
8 8
(2 )将函数 f (x) 图像上所有点横坐标伸长到原来的 2 倍(纵坐标不变) , 得
y = sin(x + ) ,再向右平移 个单位长度, 得 g(x) = sin x . ·················· 6 分
所以 h(x) = sin x(sin x + cs x)
2 π
= sin x + sin x cs x = sin(2x − ) + , ····································· 8 分
4 2
π π π 3π π π 3π
因为 0 ≤ x ≤ , − ≤ 2x − ≤ ,所以 2x − = , x = 时, h(x) 取得最大值为
2 4 4 4 4 2 \l "bkmark1" 8
1+ . ································································································ 10 分
18.解:(1)当 n = 1 时, 2a1 = a12 ,则 a1 = 0 或 a1 = 2 ,
因为 a1 > 1,所以 a1 = 2 ; ···································································· 2 分
( 2S
当 n ≥ 2 时,〈l2Sn − EQ \* jc3 \* hps13 \\al(\s\up 9(n),1)
+ n − 1
2
= a
n
+ n − 2
2
n − 1
= a
n
,两式相减得, 2a
2 2 = an − an − 1
+1,
即 an − 12 = (an − 1)2 ,因为 an > 1,所以 an − 1 = an − 1 ,即 an − an − 1 = 1 , ········ 4 分
故数列{an } 是以 2 为首项, 1为公差的等差数列. ········································ 5 分
(2)由(1)知, an = 2 + (n − 1) ×1 = n +1 ,
( 2n+1 , n为奇数
, n为偶数 ln(n+ 2)
所以bn =〈 1 , ······························································ 7 分
2 1 2 3 2n n
T = b + b + b + … + b
= (b1 + b3 + … + b2n − 1 ) + (b2 + b4 + … + b2n )
2 4 2n 1 1 1
= (2 + 2 + … + 2 ) + ( 2 × 4 + 4 × 6 + … + 2n× (2n+ 2) )
4(1 − 4n ) 1 1 1 1 1 1 1
= + [( − ) + ( − ) + … + ( − )] ························ 10 分
1 − 4 2 2 4 4 6 2n 2n + 2
所以, T2n = 4n+1 − 4 + n . ·························································· 12 分
3 4n+ 4
1 4
19.解:(1)由题知, 每年的追加投入是以 80 为首项, 1 − = 为公比的等比数列,
5 5
所以, an = 80 × = 400 − 400()n ; ················································· 3 分
1 5
同理,每年牧草收入是以 60 为首项, 1+ = 为公比的等比数列,
4 4
所以, bn = 60 × = 240()n − 240 . ·················································· 6 分
(2)设至少经过 n 年,牧草总收入超过追加总投入,即 bn − an > 0 ,
5 4 5 4
即 240( )n − 240 − (400 − 400( )n ) = 240( )n + 400( )n − 640 > 0 , ············· 8 分
4 5 4 5
令 ()n = t(0 < t < 1) ,则上式化为 + 400t − 640 > 0 ,
即 5t2 − 8t + 3 > 0 , ·················································································· 9 分
所以 0 <
3 4 3 4 3
解得 0 < t < ,即 ( )n < ,所以, n lg < lg ,
5 5 5 5 5
即 n > lg = lg 3 − lg 5 = lg 3 + lg 2 − 1 ≈ 2.2 ,所以 n ≥ 3 . ··························· 11 分
lg lg 4 − lg 5 3lg 2 − 1
所以,至少经过 3 年,牧草总收入超过追加总投入. ········································· 12 分
20.解:若选①:(1)由正弦定理得, 3sin B = sin C + 3sin Acs C , ·················· 1 分
因为 sin B = sin(A+ C) ,所以 3sin(A+ C) = sin C + 3sin A cs C ,
即 3cs Asin C = sin C ,又因为 C ∈(0, π) , sin C > 0 , ························· 3 分
所以 cs A = . ·················································································· 4 分
(2)在 ∆ABC 中, cs A = ,则 sin A = ,
b sin B sin(A+ C) sin A cs C + cs Asin C 2 1 = = = = +
c sin C sin C sinC 3 tan C 3
. ············ 6 分
> C > − A > 0 ,
(0 < B < 因为 ∆ABC 是锐角三角形,所以〈
0 < C < l
π
2
π
2
(A+ C >
,即〈
0 < C < π l 2
, 即
所以 tan C > tan( π − A) = sin( − A) = cs A = ,
cs( 2 − A)
2 π sin A 4
< 2 , ······································································ 7 分
1
tan C
所以 ∈ ( ,3) . ·················································································· 8 分
b b2 + c2 b c 1 1
设 t = ,则 = + = t + ,
c 2bc 2c 2b 2 2t
t 1 1 ′ 1 1 t2 − 1
2 2t 3 2 2t2 2t2
令 y = + , t ∈( ,3) ,则 y = − = ,
令 y′ = 0 ,则 t = 1,
所以 0 <
则 y 在 ( ,1) 上单调递减,在 (1, 3) 上单调递增, ······································ 10 分
1 1 5 b2 + c2 \l "bkmark2" 5
所以1 ≤ t + < ,即 的取值范围为[1, ) 12 分
2 2t 3 2bc \l "bkmark3" 3
若选②:(1)因为 2 S = a2 − (b − c)2 ,所以 (b − c)2 − a2 + 2 S = 0 ,
所以 所以
所以
b2 + c2 − a2 − 2bc + bcsin A = 0 ·············································· 1 分
,
2bc cs A − 2bc + bcsin A = 0 ,
sin A = − cs A . ································································ 3 分
又 sin2 A+ cs2 A = 1 ,解得 cs A = 或 cs A = 1 (舍),
所以 cs A = . ·················································································· 4 分
(2)在 ∆ABC 中, cs A = ,则 sin A = ,
b = sin B = sin(A+ C) = sin A cs C + cs Asin C = 2 + 1 , ··········· 6 分
c sin C sin C sinC 3 tan C 3
(0 < B < 因为 ∆ABC是锐角三角形,所以〈
0 < C < l
A+ C >
0 < C <
π ( π
EQ \* jc3 \* hps24 \\al(\s\up 7(2),π) ,即〈 EQ \* jc3 \* hps24 \\al(\s\up 7(2),π) ,即 > C > − A > 0 ,
2 l 2
所以 tan C > tan( π − A) = sin( − A) = cs A = ,
cs( 2 − A)
2 π sin A 4
< 2 , ······································································ 7 分
1
tan C
所以 ∈ ( ,3) . ·················································································· 8 分
b b2 + c2 b c 1 1
设 t = ,则 = + = t + ,
c 2bc 2c 2b 2 2t
令 y =
t 1
+ , 2 2t
′
y =
t ∈(,3) ,则
t2 − 1 2t2
1 1
=
−
2 2t2
,
令 y′ = 0 ,则 t = 1,
所以 0 <
则y 在 ( ,1) 上单调递减,在(1, 3) 上单调递增, ······································ 10 分
1 1 5 b2 + c2 \l "bkmark4" 5
所以1 ≤ t + < ,即 的取值范围为[1, ) 12 分
2 2t 3 2bc \l "bkmark5" 3
若选③:(1)由正弦定理得, a cs A+ a cs(B − C) = 4 bcs Asin C , ······· 1 分
因为 cs A = − cs(B + C) ,所以 −a cs(B + C) + a cs(B − C) = 4 bcs Asin C ,
所以 2asin Bsin C = 4 bcs Asin C ,
所以 2 sin Asin Bsin C = 4 sin Bcs Asin C . ···································· 3 分
又因为 B, C ∈(0, π) , sin B ≠ 0, sin C ≠ 0 ,所以 sin A = 2 cs A > 0 ,
1
.
又 sin2 A+ cs2 A = 1 ,解得 cs A =
3
················································· 4 分
(2)在 ∆ABC 中, cs A = ,则 sin A = ,
b = sin B = sin(A+ C) = sin A cs C + cs Asin C = 2 + 1 , ··········· 6 分
c sin C sin C sinC 3 tan C 3
(0 < B < 因为 ∆ABC是锐角三角形,所以〈
0 < C < l
A+ C >
0 < C <
π ( π
EQ \* jc3 \* hps24 \\al(\s\up 7(2),π) ,即〈 EQ \* jc3 \* hps24 \\al(\s\up 7(2),π) ,即 > C > − A > 0 ,
2 l 2
所以 tan C > tan( π − A) = sin( − A) = cs A = ,
cs( 2 − A)
2 π sin A 4
< 2 , ······································································ 7 分
1
tan C
所以 ∈ ( ,3) . ·················································································· 8 分
b b2 + c2 b c 1 1
设 t = ,则 = + = t + ,
c 2bc 2c 2b 2 2t
令 y =
t 1
+ , 2 2t
′
y =
t ∈(,3) ,则
t2 − 1 2t2
1 1
=
−
2 2t2
,
令 y′ = 0 ,则 t = 1,
则y 在 ( ,1) 上单调递减,在(1, 3) 上单调递增, ······································ 10 分
1 1 5 b2 + c2 \l "bkmark2" 5
所以1 ≤ t + < ,即 的取值范围为[1, ) 12 分
2 2t 3 2bc \l "bkmark3" 3
21.解:(1)由题知, f ′(x) = (x + 1)(ex − a) , 1 分
所以,当 a ≤ 0 时, ex − a > 0 恒成立, 所以,令 f ′(x) = 0 ,解得 x = − 1 .
所以,当 x∈ (−∞, − 1) 时, f ′(x) < 0 , f (x) 在 (−∞, − 1) 上单调递减;
当 x∈ (− 1, +∞) 时, f ′(x) > 0 , f (x) 在 (− 1, +∞) 上单调递增; ···················· 3 分
当 a > 0 时,令 f ′(x) = 0 ,解得 x = − 1 或 x = ln a ,
所以,当 ln a > −1 ,即 a > 时, x∈ (− 1, ln a) 时, f ′(x) < 0 , f (x) 在 (− 1, ln a) 上单
调递减,当 x∈ (−∞, − 1) u (ln a, +∞) 时, f ′(x) > 0 , f (x) 在 (−∞, − 1) 和 (ln a, +∞) 上单
调递增; ······························································································· 4 分
当 ln a < −1 ,即 0 < a < 时, x∈ (ln a, − 1) 时, f ′(x) < 0 , f (x) 在 (ln a, − 1) 上单调递
减,当 x∈ (−∞, ln a) u (− 1, +∞) 时, f ′(x) > 0 , f (x) 在 (−∞, ln a) 和 (− 1, +∞) 上单调递
增; ····································································································· 5 分
当 ln a = − 1 时, f ′(x) ≥ 0 在 (−∞, +∞) 上恒成立,
所以, f (x) 在 (−∞, +∞) 上单调递增. ························································ 6 分
(2)由(1)知,当 a > 1时, f (x) 在 (− 1, ln a) 上单调递减,在 (−∞, − 1) 和 (ln a, +∞) 上
单调递增,且当 x → −∞ 时, f (x) → −∞ ,当 x → +∞ 时, f (x) → +∞ ,所以,若方程
a 1
−
2 e
f (x) = b 始终有三个不相等的实根,则 f (ln a) < b < f (− 1) ,即 − (ln a)2 < b <
在
a∈ (1, +∞) 上恒成立. ············································································· 8 分
a 1 1 1
当 a > 1时,显然 − > − . ······························································· 9 分
2 e 2 e
a 2 ′ 1 2
1 2
令 g(a) = − 2 (ln a) ,则 g (a) = − 2 (ln a) − ln a ,因为 a > 1,所以, ln a > 0 ,所以,
g ′(a) = − 2 (ln a) − ln a < 0 恒成 立, 所 以, g(a) 在 (1,+∞) 上 单调 递减 ,所以 ,
g(a) < g(1) = 0 11 分
综上,若方程 f (x) = b 始终有三个不相等的实根,
1 1
b 的取值范围为 0 ≤ b ≤ − . ······························································· 12 分
2 e
22.解:(1)由题得, f ′(x) = , (x > 0) , ······································ 1 分
令 h(x) = x − ln x − a, (x > 0) ,则函数 f (x) 有两个极值点, 即方程 h(x) = 0 有两个正实
数根. ······································································································ 2 分
1 x − 1
因为 h′(x) = 1 − = ,所以当 x∈ (0,1) 时, h′(x) < 0 ,h(x) 单调递减, 当 x∈ (1, +∞)
x x
时, h′(x) > 0 ,h(x) 单调递增,所以,h(x)min = h(1) = 1 − a ,且当 x → 0 时, h(x) → +∞ ,
x → +∞ 时, h(x) → +∞ . ········································································· 4 分
所以, 方程 h(x) = 0 有两个正实数根,只需 h(1) = 1 − a < 0 ,
解得 a > 1 , ······················································································· 5 分
即函数 f (x) 有两个极值点时, a 的范围为 (1,+∞) . ···································· 6 分
x
2
(2)若 x1 < x2 且 3x1 ≥ x2 ,则令
1
x
= t ∈(1, 3],由(1)知, h(x1 ) = h(x2 ) = 0 ,
即 a = x1 − ln x1 = x2 − ln x2 ,则 x2 − x1 = ln = ln t ,
x2 = tx1 = . ······················ 8 分
ln t
t − 1
,所以,
即tx1 − x1 = ln t ,解得, x1 =
tlnt
t − 1
=
(t + 1) ln t t − 1
, ··················· 9 分
所以, ln x1 + ln x2 + 2a = x1 + x2 = +
令ϕ(t) = , t ∈ (1, 3] ,则ϕ′(t) = = ,
······································································································· 10 分
令 P(t) = −2 ln t + t − ,则 P′(t) = − +1+ = > 0, t ∈(1, 3]
所以函数 P(t) 在(1, 3] 上单调递增,且 P(1) = 0 ,所以, P(t) > 0 , ············· 11 分
所以,当t ∈(1, 3] 时, ϕ′(t) > 0 ,所以, ϕ(t) 在(1, 3] 上单调递增,
所以,当 t = 3 时, ϕ(t)max = ϕ(3) = 2 ln 3 .
即 ln x1 + ln x2 + 2a 的最大值为 2 ln 3 . ···················································· 12 分
山东省烟台市2024届高三上学期期中考试数学试题: 这是一份山东省烟台市2024届高三上学期期中考试数学试题,共2页。
2023届山东省烟台市高三下学期二模试题数学PDF版含答案: 这是一份2023届山东省烟台市高三下学期二模试题数学PDF版含答案,文件包含2023届山东省烟台市高三二模数学答案pdf、2023届山东省烟台市高三二模数学pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
2022届山东省烟台市高三上学期期中考试数学试题(PDF版含答案): 这是一份2022届山东省烟台市高三上学期期中考试数学试题(PDF版含答案),共12页。