2022-2023学年陕西省西安市雁塔区益新中学七年级(下)第二次月考数学试卷(含解析)
展开
这是一份2022-2023学年陕西省西安市雁塔区益新中学七年级(下)第二次月考数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )
A. 吉B. 祥C. 如D. 意
2.下列运算正确的是( )
A. (−a3)2=a6B. a8÷a2=a4C. a3+a3=a6D. a⋅a5=a5
3.2019年12月,新型冠状病毒肺炎爆发,目前检测出的新型冠状病毒的半径平均在50纳米左右,即0.00000005米,用科学记数法表示0.00000005正确的是( )
A. 5×107B. 5×108C. 5×10−7D. 5×10−8
4.下列说法中,正确的是( )
A. 过一点有且只有一条直线与已知直线平行
B. 同位角相等
C. 从直线外一点到这条直线的垂线段叫做点到直线的距离
D. 同一平面内,过一点有且只有一条直线与已知直线垂直
5.某水果销售商有100千克苹果,当苹果单价为15元/千克时,能全部销售完,市场调查表明苹果单价每提高1元,销售量减少6千克,若苹果单价提高x元,则苹果销售额y关于x的函数表达式为( )
A. y=x(100−x)B. y=x(100−6x)
C. y=(100−x)(15+x)D. y=(100−6x)(15+x)
6.如图,在△ABC中,AB=AC=24cm,∠B=∠C,BC=16cm,点D为AB的中点,如果点P在线段BC上以4cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若在某一时刻能使△BPD与△CQP全等.则点Q的运动速度为( )
A. 4cm/s
B. 3cm/s
C. 4cm/s或3cm/s
D. 4cm/s或6cm/s
7.如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形,然后将四周突出的部分折起,制成一个无盖的长方体纸盒,则这个纸盒的容积为( )
A. b2−4a2
B. ab2−4a2b+4a3
C. ab2+4a2b+4a3
D. a3−2a2+ab
8.如图,在△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,连接MD,过点D作DN⊥MD,交BM于点N,CD与BM交于点E.下列结论:①∠ABM=∠ACD;②DM=DN;③∠AMD=45°;④S△EDN=S△ADM.其中正确结论有个.( )
A. 1B. 2C. 3D. 4
二、填空题:本题共5小题,每小题3分,共15分。
9.如图,在△ABC和△FED中,AD=FC,∠A=∠F,要使△ABC≌△FED,可以添加的条件是______.(写出一个即可)
10.如图,将一张长方形纸条折叠,如果∠1=64°,则∠2的度数为______.
11.小杜在爬一小山时,前一阶段的平均速度为v,所用时间为t1;后一阶段的平均速度为14v,所用时间为t2.下山时,小杜的平均速度保持为2v,已知小杜上山的路程和下山的路程是相同的,那么小杜下山所用时间为______.
12.若a=20220,b=2020×2022−20212,c=(−2)2022×(12)2021,比较a、b、c大小(用“20),应缴水费为y元,写出y关于x的函数关系式.
(2)若该城市某户6月份用水15吨,该户6月份水费是______.
(3)某用户8月份水费为76.4元,求该用户8月份用水量.
24.(本小题8分)
代数推理:
阅读材料:利用完全平方式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可以求出多项式x2+bx+c的最小值.
根据上述材料,解答下列问题:
(1)填空:x2−12x+ ______=(x−______)2;
(2)将多项式x2+16x−1变形为(x+m)2+n的形式,并求出x2+16x−1的最小值;
(3)若一个长方形的长和宽分别为(2a+3)和(3a+5),面积记为S1,另一个长方形的长和宽分别为5a和(a+3),面积记为S2,试比较S1和S2的大小,并说明理由.
25.(本小题8分)
(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图(3),过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.
答案和解析
1.【答案】A
【解析】解:B,C,D选项中的方块字都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;
A选项中的方块字能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;
故选:A.
根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.【答案】A
【解析】解:A、(−a3)2=a6,故A符合题意;
B、a8÷a2=a6,故B不符合题意;
C、a3+a3=2a3,故C不符合题意;
D、a⋅a5=a6,故D不符合题意;
故选:A.
利用同底数幂的除法的法则,合并同类项的法则,同底数幂的乘法的法则,幂的乘方与积的乘方的法则对各项进行运算即可.
本题主要考查同底数幂的除法,幂的乘方与积的乘方,同底数幂的乘法,合并同类项,解答的关键是对相应的运算法则的掌握.
3.【答案】D
【解析】解:0.00000005=5×10−8.
故选:D.
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
本题考查了用科学记数法表示较小的数,掌握形式为a×10−n,其中1≤|a|
相关试卷
这是一份2022-2023学年陕西省西安市雁塔区高新一中七年级(下)月考数学试卷(4月份)(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年陕西省西安市雁塔区益新中学七年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年陕西省西安市雁塔区高新一中七年级(下)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。