- 专题06 反比例函数中的平行四边形-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版) 试卷 0 次下载
- 专题07 反比例函数中的正方形-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版) 试卷 0 次下载
- 专题09 与反比例函数图象有关的拓展探究-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版) 试卷 0 次下载
- 专题10 8字型相似模型-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版) 试卷 0 次下载
- 专题11 A字型相似模型-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版) 试卷 0 次下载
专题08 反比例函数的实际应用(和物理有关)-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版)
展开1.已知某蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.
(1)求这个反比例函数的解析式;
(2)如果以此蓄电池为电源的用电器的限制电流不能超过3A,那么用电器可变电阻应控制在什么范围?
【答案】(1)函数的解析式为I=;
(2)用电器可变电阻应控制在12Ω以上的范围内.
【分析】(1)先由电流I是电阻R的反比例函数,可设I=,将点(20,1.8),利用待定系数法即可求出这个反比例函数的解析式;
(2)将I≤3代入(1)中所求的函数解析式即可确定电阻的取值范围.
(1)
解:(1)电流I是电阻R的反比例函数,设I=,
∵图象经过(20,1.8),
∴1.8=,
解得k=1.8×20=36,
∴I=;
(2)
解:∵I≤3,I=,
∴≤3,
∴R≥12,
即用电器可变电阻应控制在12Ω以上的范围内.
【点睛】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.
2.一个用电器的电阻是可调节的,其范围为.已知电压为,这个用电器的电路图如图所示.
(1)功率P与电阻R有怎样的函数关系?
(2)这个用电器功率的范围是多少?
【答案】(1);(2)
【分析】(1)根据电学知识:代入即可得出答案;
(2)根据反比例函数的性质知,,在第一象限随的增大而减小,故把电阻代入(1)所求得的式子中,即可求出功率P的最大值,把电阻代入即可求出功率P的最小值.
【详解】解:(1)根据电学知识,当时,得
.①
(2)根据反比例函数的性质可知,电阻越大,功率越小.
把电阻的最小值代入①式,得到功率的最大值
;
把电阻的最大值代入①式,得到功率的最小值
.
因此用电器功率的范围为.
【点睛】本题考查反比例函数的实际应用,解题关键是熟练掌握反比例函数的性质.
3.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(单位:千帕)随气体体积V(单位:立方米)的变化而变化,P随V的变化情况如下表所示.
(1)写出符合表格数据的P关于V的函数表达式 ;
(2)当气球的体积为20立方米时,气球内气体的气压P为多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,依照(1)中的函数表达式,基于安全考虑,气球的体积至少为多少立方米?
【答案】(1)p=;(2)4.8千帕;(3)气球的体积至少为立方米.
【分析】(1)设p与V的函数的解析式为p= ,利用待定系数法即可求函数解析式;
(2)把v=20代入p= 可得p=4.8;
(3)把p=144代入p= 得,V= .可知当气球内的气压>144千帕时,气球将爆炸,为了安全起见,气球的体积至少为 立方米.
【详解】解:(1)设p与V的函数的解析式为p=,
把点A(1.5,64)代入,
解得k=96.
∴这个函数的解析式为p=;
故答案为p=;
(2)把v=20代入p=得:p=4.8,
当气球的体积为20立方米时,气球内的气压是4.8千帕;
(3)把p=144代入p=得,V=,
故p≤144时,v≥,
答:气球的体积至少为立方米.
【点睛】本题考查反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.
4.小涂在课余时间找到了几副度数不同的老花镜,让镜片正对着太阳光,并上下移动镜片,直到地上的光斑最小可以认为是焦点,此时他测了镜片与光斑的距离可以当做焦距,得到如下数据:
(1)老花镜镜片是______凸的、凹的、平的,度数越高镜片的中心______越薄、越厚、没有变化;
(2)观察表中的数据,可以找出老花镜的度数与镜片焦距的关系,用关系式表示为:______;
(3)如果按上述方法测得一副老花镜的焦距为,可求出这幅老花镜的度数为______.
【答案】(1)凸的;越厚
(2)
(3)143度
【分析】(1)根据题意及常识可求解;
(2)利用表格中的数据可求解与的关系式;
(3)将值代入计算可求解.
(1)
解:老花镜镜片是凸的,度数越高镜片的中心越厚,
故答案为:凸的;越厚;
(2)
解:根据表中数据可得:,,,,,
∴,
∴老花镜的度数与镜片焦距的关系可近似的看作,
故答案为:;
(3)
解:当时,,
解得 ,
即这幅老花镜的度数是度.
故答案为:度.
【点睛】本题主要考查反比例函数的应用,根据数据找函数关系是解题的关键.
5.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,二氧化碳的密度也会随之改变,密度(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示.
(1)求与V之间的函数关系式:
(2)求当m3时二氧化碳的密度.
【答案】(1)
(2)1kg/m3
【分析】(1)由图象可知,反比例函数图象经过点(5,2),利用待定系数法求出函数解析式;
(2)运用这个关系式解答实际问题,把v=10m3代入函数解析式即可求解.
(1)
解:设密度与体积V的反比例函数关系式为,
把点代人解,得,
∴与V的反比例函数关系式为.
(2)
解:当v=10m3时,P==1(kg/m3),
∴当V=10m3时二氧化碳的密度为1kg/m3.
【点睛】本题主要考查图象的识别和待定系数法求函数解析式.从图象上观察得出点(5,2)在函数图象上是解题的关键.
6.某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)求这一函数的表达式;
(2)当气体压强为50kPa时,求V的值;
(3)当气球内的体积小于0.5m3时,气球爆炸,为了安全起见,气体的压强不大于多少?
【答案】(1)函数关系式为P=
(2)当气球内的气压为50kPa时,气球的体积为2立方米
(3)为了安全起见,气体的压强不大于200kPa
【分析】(1)设P与V的函数关系式为P=,将点代入求解即可;
(2)将P=50代入P=中求解即可;
(3)根据题意可得V=0.5m3时,气球将爆炸,代入函数解析式求解即可.
(1)
解:设P与V的函数关系式为P=,
则 k=1×100,解得k=100,
∴函数关系式为P=.
(2)
将P=50代入P=中,
得=50,
解得V=2,
∴当气球内的气压为50kPa时,气球的体积为2立方米.
(3)
当气球内的体积小于0.5m3时,气球爆炸,
∴V=0.5m3时,气球将爆炸,
∴ =0.5,
解得 P=200 kPa
故为了安全起见,气体的压强不大于200kPa.
【点睛】题目主要考查反比例函数的应用,理解题意,根据图象确定函数解析式是解题关键.
7.如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高(单位:)是物距(小孔到蜡烛的距离)(单位:)的反比例函数,当时,.
(1)求关于的函数解析式;
(2)若火焰的像高为,求小孔到蜡烛的距离.
【答案】(1)
(2)
【分析】(1)运用待定系数法求解即可;
(2)把代入反比例函数解析式,求出y的值即可.
(1)
由题意设,
把,代入,得.
∴关于的函数解析式为.
(2)
把代入,得.
∴小孔到蜡烛的距离为.
【点睛】本题主要考查了运用待定系数法求函数关系式以及求函数值,能正确掌握待定系数法是解答本题的关键.
8.某同学设计了如下杠杆平衡实验:如图,取一根长65cm的质地,均匀木杆,用细绳绑在木杆的中点O处并将其吊起来,在中点的左侧,距离中点20cm处挂一个重9N的物体,在中点的右侧,用一个弹簧测力计向下拉,使木杆保持平衡(动力×动力臂=阻力×阻力臂),改变弹簧测力计与中点O的距离L(单位:cm),观察弹簧测力计的示数F(单位:N). 通过实验,得到下表数据:
(1)你认为表中哪组数据是明显错误的.
(2)在已学过的函数中选择合适的模型,求F关于L的函数表达式.
(3)若弹簧测力计的量程是10N,求L的取值范围.
【答案】(1)第3组;
(2)F•L=180;
(3)18cm≤L≤32.5cm;
【分析】(1)根据动力×动力臂=阻力×阻力臂,可得L与F成反比例关系;
(2)设F•L=k,将第1组数据代入求k的值即可;
(3)根据F≤10(N),列不等式求值即可;
(1)
解:∵阻力×阻力臂是个定值,
∴随着L的增大,F会减小,
∴第3组是明显错误的;
(2)
解:设F•L=k,则k=9×20=180,
∴F•L=180;
(3)
解:∵,
∴当F≤10(N)时,,L≥18(cm),
∵木杆长65cm,O是木杆的中点,
∴L≤32.5(cm),
∴18cm≤L≤32.5cm;
【点睛】本题考查了反比例函数和一元一次不等式的实际应用,反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成xy=k(k≠0,x≠0,y≠0)的形式;掌握反比例函数的性质是解题关键.
9.如图,小明想要用撬棍撬动一块大石头,已知阻力为,阻力臂长为.设动力为,动力臂长为.(杠杆平衡时,动力×动力臂=阻力×阻力臂,图中撬棍本身所受的重力忽略不计)
(1)求y关于x的函数解析式.
(2)当动力臂长为时,撬动石头至少需要多大的力?
【答案】(1);
(2)当动力臂长为时,撬动石头至少需要的力.
【分析】(1)根据动力×动力臂=阻力×阻力臂,即可得出y关于x的函数表达式;
(2)将x=1.5代入(1)中所求解析式,即可得出y的值.
(1)
解:由题意,得,
则,
∴y关于x的函数解析式为.
(2)
解:∵,
∴当时,,
故当动力臂长为时,撬动石头至少需要的力.
【点睛】此题主要考查了反比例函数的应用,正确得出y与x之间的关系是解题关键.
10.某科技小组野外考察时遇到一片烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进的路线铺了若干块木板,构成了一条临时通道.
(1)若人和木板对湿地地面的压力一定时,木板对烂泥湿地的压强是木板面积的反比例函数,其图象如图所示.
①求出与的函数解析式;
②当木板面积为时,压强是多少?
(2)已知该科技小组每个成员的体重与每块木板重量之和在之间,若要求压强不超过5000Pa,要确保每个人都能安全通过湿地,木板的面积至少要多大?
【答案】(1)①,;
(2)木板的面积至少要
【分析】①根据压强与面积的关系设函数关系,代入一个已知点的坐标求解即可.
②代入函数解析式即可.
(2) 由题意可得人与木板对湿地地面的最大压力为750N,此时有,当时代入数据求解即可.
(1)
①设与的函数关系式为,由图可知,当时,
所以有,解得:.
即与的函数解析式为:.
②把代入得:
答:当木板面积为时,压强是2000Pa.
(2)
(2)由题意可得:人与木板对湿地地面的最大压力为750N,此时有,
当时,所以.
答:木板的面积至少要
【点睛】本题考查反比例函数与实际问题,解题的关键是根据图形求出反比例函数的解析式代入数据求解即可.
11.某汽车的功率P(单位:W)为一定值,它的速度v(单位:m/s)是它所受的奉引力F(单位:N)的反比例函数,它的图象如图所示:
(1)求速度v关于牵引力F的函数解析式;
(2)当它所受的牵引力为2500 N时,汽车的速度为多少?
【答案】(1)
(2)
【分析】(1)设函数关系式为,把(3000,20)代入所设函数关系式中,可求得比例系数P,从而可得函数解析式;
(2)根据所求得的函数解析式,即可求得当F=2500N时的函数值.
(1)
设v与F的函数关系式为,
把(3000,20)代入得,
∴,
∴速度v关于牵引力F的函数的解析式为.
(2)
当时,
.
【点睛】本题是反比例函数的应用,考查了求函数解析式,求函数值,关键是从图象中获得信息,从而求得函数解析式.
12.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体V(立方米)的反比例函数,其图象如图所示.
(1)求该反比例函数的关系式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
【答案】(1)P=;(2)200千帕
【分析】(1)将已知点的坐标代入到反比例函数的一般形式中即可求得其解析式;
(2)代入V=0.8求得压强即可;
【详解】解:(1)设表达式为P=,
∵图象经过点(2.5,64),
∴k=2.5×64=160,
所以表达式为P=;
(2)当V=0.8时,P=千帕.
【点睛】本题考查了反比例函数的实际应用.关键是根据图象建立函数关系式,并会运用函数式解答题目的问题.
13.某气球内充满一定质量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数,其图象如图所示.
(1)写出这个函数的表达式;
(2)当气体体积为时,气压是多少?
(3)当气球内的气压大于时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
【答案】(1);(2)96;(3)气球的体积应不小于
【分析】(1)根据图象上的点的坐标,待定系数法求反比例函数解析式即可;
(2)将代入(1)中的解析式即可;
(3)根据反比例函数图象,结合题意解不等式即可.
【详解】(1)设与的函数关系式为,
把,代入上式,
解得.
∴与的函数关系式为.
(2)
当时,.
(3)由,得,
∴气球的体积应不小于.
【点睛】本题考查了反比例函数的应用,掌握反比例函数图象以及性质是解题的关键.
14.在力F(N)的作用下,物体会在力F的方向上发生位移s(m),力F所做的功W(J)满足W=Fs.当W为定值时,F与s之间的函数图象如图所示:
(1)求力F所做的功;
(2)试确定F与s之间的函数表达式;
(3)当F=4N时,求s的值.
【答案】(1)15J;(2)F=;(3)
【分析】(1)由图象可知,是反比例函数关系,当s=2时,F=7.5,代入W=Fs即可求得F;
(2)利用待定系数法即可求得F与s之间的函数表达式;
(3)利用反比例函数解析式即可求得s.
【详解】解:(1)把s=2,F=7.5,代入公式W=Fs=2×7.5=15,
即力F所做的功是15J;
(2)∵W=Fs,
∴F=,
由(1)可知W=15,
∴F与s之间的函数表达式为:F=;
(3)由(2)可知F=,
当F=4N时,4=,
解得:s=.
【点睛】本题主要考查了反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用题目所给的定值求出它们的关系式.
15.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m2)的反比例函数,其图象如图所示.
(1)写出这个函数的表达式;
(2)当气球的体积是1.6m3时,气球内的气压是多少千帕?
(3)当气球内的气压大于128kPa时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
【答案】(1)这个函数的解析式为P=;(2)气球的体积为1.6立方米时,气球内的气压是60千帕;(3)气球的体积应不小于立方米
【分析】(1)由图像知反比例函数图像过点(0.8,120),设出P与V的函数关系式为,代入点(0.8,120),求出k的值,即可得函数表达式;
(2)把代入(1)求得的函数关系式,即可求出当气球体积1.6m3时的气压值;
(3)由题意可知,气压越大,气球体积就越大,为了避免气球爆炸,应该使,即≤144,求出所对应的体积即可.
【详解】解:(1)解:(1)设P与V的函数的解析式为,
把点A(0.8,120)代入,
解得:k=96.
∴这个函数的解析式为P=;
(2)把V=1.6代入P=得:P=60,
当气球的体积为1.6立方米时,气球内的气压是60千帕;
(3)把P=128代入P=得,V=,
故P≤128时,V≥,
答:气球的体积应不小于立方米.
【点睛】本题主要考查了反比例函数的应用,具体考查了求反比例函数解释式,求函数值,及反比例函数的图形变化规律的有关知识,解题的关键是熟练掌握反比例函数的性质.
16.在某一电路中,保持电压不变,电流是电阻的反比例函数,如图是某电路电流、电阻的关系图,其图象经过点.
(1)求与的函数表达式;
(2)当电阻为时,求电流大小.
【答案】(1);(2)12A
【分析】(1)由题意得,利用待定系数法求解即可
(2)直接将代入与的函数关系式求解即可
【详解】.解:(1)由题意可得.
∵图象过点,
∴.
∴与的函数表达式为.
(2)当时,.
∴电流大小为.
【点睛】本题考查了反比例函数的应用,以及求反比例函数解析式,解题关键是熟练掌握反比例函数的性质.
17.已知近视眼镜片的度数y(度)是镜片焦距x(cm)(x>0)的反比例函数,调查数据如表:
(1)求y与x的函数表达式;
(2)若近视眼镜镜片的度数为500度,求该镜片的焦距.
【答案】(1)y=;(2)20cm.
【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;
(2)在解析式中,令y=500,求出x的值即可.
【详解】解:(1)根据题意得:y与x之积恒为10000,则函数的解析式是y=;
(2)令y=500,则500=,
解得:x=20.
即该镜片的焦距是20cm.
【点睛】本题考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的积是常数,是解决本题的关键.
18.嵊州市三江购物中心为了迎接店庆,准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如下图所示.
(1)试写出这个函数的表达式;
(2)当气球的体积为2m3时,气球内气体的气压是多少?
(3)当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,对气球的体积有什么要求?
【答案】(1)P=;(2)当V=2m3时,P=48 kPa;(3)气球的体积应大于等于0.8 m3.
【分析】(1)根据气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,且过点(1.6,60)故P•V=96;
(2)把V=2代入(1)中的函数关系式求p即可;
(3)依题意P≤120,解不等式即可,可判断V≥.
【详解】解:(1)设球内气体的气压P(kPa)和气体体积V(m3)的关系式为P=,
∵图象过点(1.6,60)
∴k=96
即P=;
(2)当V=2m3时,P=48(kPa);
(3)当P>120KPa时,气球将爆炸,
∴P≤120,即≤120,
∴V≥0.8.
∴气球的体积应大于等于0.8 m3.
【点睛】此题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.
P
1.5
2
2.5
3
4
…
V
64
48
38.4
32
24
…
老花镜的度数度
焦距f/m
第1组
第2组
第3组
第4组
第5组
L/cm
20
24
25
28
30
F/N
9
7.5
10
6
眼镜片度数y(度)
400
625
800
1000
…
1250
镜片焦距x(cm)
25
16
12.5
10
…
8
期末难点特训(二)与圆综合有关的压轴题-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版): 这是一份期末难点特训(二)与圆综合有关的压轴题-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版),文件包含期末难点特训二与圆综合有关的压轴题原卷版docx、期末难点特训二与圆综合有关的压轴题解析版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
初中数学苏科版八年级下册11.1 反比例函数精练: 这是一份初中数学苏科版八年级下册<a href="/sx/tb_c17228_t7/?tag_id=28" target="_blank">11.1 反比例函数精练</a>,文件包含专题37实际问题中的反比例函数原卷版docx、专题37实际问题中的反比例函数解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
初中数学苏科版八年级下册11.1 反比例函数练习: 这是一份初中数学苏科版八年级下册<a href="/sx/tb_c17228_t7/?tag_id=28" target="_blank">11.1 反比例函数练习</a>,文件包含专题36和反比例函数有关的最值问题原卷版docx、专题36和反比例函数有关的最值问题解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。