终身会员
搜索
    上传资料 赚现金
    专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点-2022-2023学年八年级数学下册举一反三系列(苏科版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点(举一反三)(苏科版)(原卷版).docx
    • 解析
      专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点(举一反三)(苏科版)(解析版).docx
    专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点-2022-2023学年八年级数学下册举一反三系列(苏科版)01
    专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点-2022-2023学年八年级数学下册举一反三系列(苏科版)02
    专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点-2022-2023学年八年级数学下册举一反三系列(苏科版)03
    专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点-2022-2023学年八年级数学下册举一反三系列(苏科版)01
    专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点-2022-2023学年八年级数学下册举一反三系列(苏科版)02
    专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点-2022-2023学年八年级数学下册举一反三系列(苏科版)03
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学9.3 平行四边形课时训练

    展开
    这是一份数学9.3 平行四边形课时训练,文件包含专题133期中期末专项复习之中心对称图形平行四边形二十二大必考点举一反三苏科版原卷版docx、专题133期中期末专项复习之中心对称图形平行四边形二十二大必考点举一反三苏科版解析版docx等2份试卷配套教学资源,其中试卷共188页, 欢迎下载使用。


    TOC \ "1-3" \h \u
    \l "_Tc7371" 【考点1 格点中利用无刻度直尺作平行四边形】 PAGEREF _Tc7371 \h 1
    \l "_Tc5579" 【考点2 利用平行四边形的判定与性质求面积】 PAGEREF _Tc5579 \h 3
    \l "_Tc11294" 【考点3 利用平行四边形的判定与性质求长度】 PAGEREF _Tc11294 \h 4
    \l "_Tc864" 【考点4 利用平行四边形的判定与性质求角度】 PAGEREF _Tc864 \h 5
    \l "_Tc5209" 【考点5 利用平行四边形的判定与性质求最值】 PAGEREF _Tc5209 \h 6
    \l "_Tc11486" 【考点6 利用动点判断平行四边形】 PAGEREF _Tc11486 \h 7
    \l "_Tc4592" 【考点7 平行四边形的判定与性质的实际应用】 PAGEREF _Tc4592 \h 9
    \l "_Tc25606" 【考点8 根据矩形的判定与性质求线段长】 PAGEREF _Tc25606 \h 10
    \l "_Tc594" 【考点9 根据矩形的判定与性质求角度】 PAGEREF _Tc594 \h 11
    \l "_Tc24693" 【考点10 根据矩形的判定与性质求面积】 PAGEREF _Tc24693 \h 12
    \l "_Tc30441" 【考点11 矩形与折叠问题】 PAGEREF _Tc30441 \h 14
    \l "_Tc19749" 【考点12 根据菱形的判定与性质求线段长】 PAGEREF _Tc19749 \h 15
    \l "_Tc14616" 【考点13 根据菱形的判定与性质求角度】 PAGEREF _Tc14616 \h 16
    \l "_Tc14073" 【考点14 根据菱形的判定与性质求面积】 PAGEREF _Tc14073 \h 18
    \l "_Tc3868" 【考点15 根据正方形的判定与性质求线段长】 PAGEREF _Tc3868 \h 20
    \l "_Tc3220" 【考点16 根据正方形的判定与性质求角度】 PAGEREF _Tc3220 \h 21
    \l "_Tc20729" 【考点17 根据正方形的判定与性质求面积】 PAGEREF _Tc20729 \h 23
    \l "_Tc8721" 【考点18 中点四边形】 PAGEREF _Tc8721 \h 24
    \l "_Tc5601" 【考点19 特殊四边形的证明】 PAGEREF _Tc5601 \h 26
    \l "_Tc32600" 【考点20 特殊四边形的动点问题】 PAGEREF _Tc32600 \h 28
    \l "_Tc17841" 【考点21 特殊四边形的最值问题】 PAGEREF _Tc17841 \h 29
    \l "_Tc13849" 【考点22 特殊四边形的存在性问题】 PAGEREF _Tc13849 \h 31
    【考点1 格点中利用无刻度直尺作平行四边形】
    【例1】(2022春·吉林长春·八年级校考期末)如图,在6×6网格中,每个小正方形的边长为1,点A, B在格点上.请根据条件画出符合要求的图形.
    (1)在图甲中画出以点A为顶点且一边长为5的平行四边形.要求:各顶点均在格点上.
    (2)在图乙中画出线段AB的中点O.
    要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.
    【变式1-1】(2022春·内蒙古呼伦贝尔·八年级校考期末)如图,每个小正方形的边长都是1,A、B、C、D均在网格的格点上.
    (1)∠BCD是直角吗?请证明你的判断.
    (2)找到格点E,并画出四边形ABED(一个即可),使得其面积与四边形ABCD面积相等.
    【变式1-2】(2022春·浙江湖州·八年级统考期末)如图,在10×10的正方形网格中(每个正方形的边长为1),点A和点B都在格点上,仅用无刻度的直尺,分别按以下要求作图.
    (1)图1中,以AB为边作一平行四边形,要求顶点都在格点上,且其面积为6;
    (2)图2中,以AB为对角线作一平行四边形,要求顶点都在格点上,且其面积为10.
    【考点2 利用平行四边形的判定与性质求面积】
    【例2】(2022春·重庆渝中·八年级重庆巴蜀中学校考期末)如图,F是□ABCD的边CD上的点,Q是BF中点,连接CQ并延长交AB于点E,连接AF与DE相交于点P,若S△APD=2cm2,S△BQC=8cm2,则阴影部分的面积为( )cm2.
    A.24B.17C.18D.10
    【变式2-1】(2022秋·福建泉州·九年级统考期末)如图,△ABC中,∠ABC=90°,∠CAB=60°,AC=4.作出△ABC共于点A成中心对称的△AB′C′,其中点B对应点为B′,点C对应点为C′,则四边形CB′C′B的面积是( )
    A.128B.643C.64D.323
    【变式2-2】(2022秋·浙江宁波·八年级校考期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC的面积,只需要知道下列哪个三角形的面积即可( )
    A.△APGB.△ADPC.△DFPD.△FEG
    【变式2-3】(2022春·全国·八年级专题练习)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=3BG,S▱BEPG=1.5,则S▱AEPH=__.
    【考点3 利用平行四边形的判定与性质求长度】
    【例3】(2022·辽宁丹东·校考一模)如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是( )
    A.2B.1C.3D.2
    【变式3-1】(2022春·江苏无锡·八年级统考期末)如图,∠ABC=45°,AB=2,BC=22,点P为BC上一动点,AQ∥BC,CQ∥AP,AQ 、CQ交于点Q,则四边形APCQ的形状是______,连接PQ,当PQ取得最小值时,四边形APCQ的周长为_____.
    【变式3-2】(2022·广东佛山·石门中学校考一模)如图,在△ABC中,D,E分别为BC,AC上的点,将△CDE沿DE折叠,得到△FDE,连接BF,CF,∠BFC=90°,若EF∥AB,AB=43,EF=10,则AE的长为 _____.
    【变式3-3】(2022春·八年级课时练习)如图,在四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AC、AE,AE交CD于点H,∠DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的长为( )
    A.9B.97C.10D.310
    【考点4 利用平行四边形的判定与性质求角度】
    【例4】(2022春·湖北武汉·八年级校考期末)如图,AB=13,点D为AB上一动点,CD⊥AB于D,CD=8,点E在线段CD上,CE=3,连接BE.当BE+AC最小时,∠ACD的度数为( )
    A.75°B.60°C.45°D.30°
    【变式4-1】(2022·全国·八年级专题练习)如图所示,在△ABC的BC边的同侧分别作等边△ABD,等边△BCF和等边△ACE,AB=3,AC=4,BC=5,求∠DFE的度数.
    【变式4-2】(2022秋·山东泰安·八年级校考期末)如图,在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AO=OC.

    (1)求证:
    ①△AOE≌△COF;
    ②四边形ABCD为平行四边形;
    (2)过点O作EF⊥BD,交AD于点E,交BC于点F,连接BE,若∠BAD=100°,∠DBF=32°,求∠ABE的度数.
    【变式4-3】(2022春·甘肃定西·八年级统考期末)如图,在四边形ABCD中,O是对角线BD的中点,点E是BC边上一点,连接EO并延长交AD边于点F、交CD延长线于点G.OE=OF,AD=BC.
    (1)求证:四边形ABCD是平行四边形.
    (2)若∠A=62°,∠G=40°,求∠BEG的度数.
    【考点5 利用平行四边形的判定与性质求最值】
    【例5】(2022春·四川成都·八年级统考期末)如图,在平面直角坐标系中有A0,3,D5,0两点.将直线l1:y=x向上平移2个单位长度得到直线l2,点B在直线l2上,过点B作直线l1的垂线,垂足为点C,连接AB,BC,CD,则折线ABCD的长AB+BC+CD的最小值为______.
    【变式5-1】(2022秋·吉林长春·八年级长春外国语学校校考期末)如图,在矩形ABCD中,AB=12,AD=10,点P在AD上,点Q在BC上,且AP=CQ,连结CP、QD,则PC+QD的最小值为( )
    A.22B.24C.25D.26
    【变式5-2】(2022春·河北保定·八年级统考期末)如图,已知▱ABCD的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为( )
    A.4B.5C.6D.7
    【变式5-3】(2022秋·全国·八年级期末)在平面直角坐标系中,已知四边形AMNB各顶点坐标分别是:A(0,−2),B(2,2),M(3,a),N(3,b),且MN=1, aA.6+25B.6+13C.34+25+1D.34+13+1
    【考点6 利用动点判断平行四边形】
    【例6】(2022春·山西晋城·八年级统考期末)综合与探究:直线y=x+2与x轴和y轴分别交于点A、B,直线CD与AB交于点C,与y轴交于点D(0,8),过点C作CE⊥x轴于点E,点E的横坐标为3.
    (1)求直线CD的解析式;
    (2)点P是x轴上一动点,过点P(t,0)作x轴垂线分别与直线AB、CD交于点M、N,求线段MN的长(用t表示);
    (3)在(2)的条件下,t为何值时,以M、N、C、E为顶点的四边形是平行四边形.
    【变式6-1】(2022春·八年级课时练习)如图在平面直角坐标系中,A−8,0,C0,26,AB∥y轴且AB=24,点P从点A出发,以1个单位长度/s的速度向点B运动;点Q从点C同时出发,以2个单位长度/s的速度向点O运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t秒.
    (1)当四边形BCQP是平行四边形时,求t的值;
    (2)当PQ=BC时,求t的值;
    (3)当PQ恰好垂直平分BO时,求t的值.
    【变式6-2】(2022秋·山东威海·八年级统考期末)如图,四边形ABCD中,AD∥BC,AD=3,BC=8,E是BC的中点,点P以每秒1个单位长度的速度从A点出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动,点P停止运动时,点Q也随之停止运动.当运动时间为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形?
    【变式6-3】(2022春·湖南长沙·八年级长沙市第二十一中学校考期末)如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.
    (1)PD =_________,CQ=__________;(用含t的式子表示)
    (2)当运动时间t为多少秒时,PQ∥CD;
    (3)当运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
    【考点7 平行四边形的判定与性质的实际应用】
    【例7】(2022春·八年级课时练习)如图,一块草地的中间有一条弯路,AC∥BD,CE∥DF.请给出一种方案,把道路改直,且草地的种植面积保持不变.
    【变式7-1】(2022春·江苏泰州·八年级靖江市靖城中学校期中)村庄A和村庄B位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A与B之间的距离最短?
    【变式7-2】(2022秋·浙江温州·八年级乐清外国语学校校考期末)某风力发电设备如图1所示,其示意图如图2,已知三个叶片OA,OB,OC均匀地∠AOB=∠BOC=∠COA分布在支点O上,OH垂直地面MN.当光线与地面的夹角为60°,叶片CO与光线平行时,测得叶片影子PQ的长为12米,则叶片的长为______米;当转动过程中叶片OB垂直光线(这片刻时间忽略不计,光线与地面的夹角还是60°),则叶片影子的长度是_______米.
    【变式7-3】(2022春·江苏·八年级期末)如图1是某一遮阳蓬支架从闭合到完全展开的一个过程,当遮阳蓬支架完全闭合时,支架的若干支杆可看作共线.图2是遮阳蓬支架完全展开时的一个示意图,支杆MN固定在垂直于地面的墙壁上,支杆CE与水平地面平行,且G,F,B三点共线,在支架展开过程中四边形ABCD始终是平行四边形.
    (1)若遮阳蓬完全展开时,CE长2米,在与水平地面呈60°的太阳光照射下,CE在地面的影子有______米(影子完全落在地面)
    (2)长支杆与短支杆的长度比(即CE与AD的长度比)是______.
    【考点8 根据矩形的判定与性质求线段长】
    【例8】(2022春·江苏南通·八年级统考期末)如图,在矩形ABCD中,AB=5,E,F是对角线AC上两点,AE=CF,过点E,F分别作AC的垂线,与边BC分别交于点G,H.若BG=1,CH=4,则EG+FH=( )
    A.41B.34C.42D.4
    【变式8-1】(2022春·广东珠海·八年级统考期末)四边形ABCD中,AD∥BC,AD与BC之间的距离为4,AB=AD=CD=5,则边BC的长为______.
    【变式8-2】(2022春·广西防城港·八年级统考期末)如图,已知平行四边形ABCD,延长AB到E,使BE=AB,连接BD,ED,EC,若ED=AD.
    (1)求证:CD=BE;
    (2)求证:四边形BECD是矩形;
    (3)连接AC,若AD=7,CD=2,求AC的长.
    【变式8-3】(2022春·湖北武汉·八年级统考期末)如图1,已知AD∥BC,AB∥CD,∠B=∠C.
    (1)求证:四边形ABCD为矩形;
    (2)如图2,M为AD的中点,N为AB的中点,BN=2.若∠BNC=2∠DCM,求BC的长.
    【考点9 根据矩形的判定与性质求角度】
    【例9】(2022春·河南安阳·八年级统考期末)如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,DF⊥AC于点F,且AE=DF.
    (1)求证:四边形ABCD是矩形.
    (2)若∠BAE:∠EAD=4:5,求∠EAO的度数.
    【变式9-1】(2022春·陕西延安·八年级延安市实验中学校考期中)如图,在□ABCD中,对角线AC与BD相交于点O,且AC=BD,∠OAD=30°,求∠OAB的度数.
    【变式9-2】(2022春·江苏泰州·八年级校考期末)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连接MN.
    (1)如图,当E在边AD上且DE=2时,求∠AEM的度数.
    (2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.
    (3)当直线MN恰好经过点C时,求DE的长.
    【变式9-3】(2022春·山东聊城·八年级统考期中) 在矩形ABCD中, AC,BD相交于点O,AE平分∠BAD交BC于点E,∠EAO=15°,求∠BEO的度数.
    【考点10 根据矩形的判定与性质求面积】
    【例10】(2022春·山东菏泽·八年级统考期中)如图,在平行四边形ABCD中,对角线AC与BD交于点O,点M,N分别为OA、OC的中点,延长BM点E,EM=BM,连接DE,若BD=2AB,且DC=5,DN=4,求四边形DEMN的面积.
    【变式10-1】(2022春·江西赣州·八年级校联考期中)如图,在平行四边形ABCD中,对角线AC与BD交于点O,点M,N分别为OA、OC的中点,延长BM至点E,使EM=BM,连接DE.
    (1)求证:△AMB≌△CND;
    (2)若BD=2AB,且AB=5,DN=4,求四边形DEMN的面积.
    【变式10-2】(2022春·贵州遵义·八年级校考期中)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.
    (1)求证:CP=AQ;
    (2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.
    【变式10-3】(2022春·云南玉溪·八年级统考期末)如图,在平行四边形ABCD中,点E是BC上一点,∠DAE的角平分线AF交CD于点G,交BC的延长线于点F,连接EG,△AGE的面积为S.
    (1)求证:AE=EF;
    (2)若EG⊥AF,试探究线段AE,EC,AD之间的数量关系,并说明理由;
    (3)在(2)的条件下,若∠AEG=∠AGD,AB=12,AD=9,求S的值.
    【考点11 矩形与折叠问题】
    【例11】(2022秋·广东肇庆·八年级广东肇庆中学校考期末)已知:如图,折叠长方形的一边AD,使点D落在BC边的点E处,已知AB=6cm,BC=10cm,则CF的长是( )
    A.83B.2C.52D.32
    【变式11-1】(2022秋·贵州遵义·九年级统考期末)如图,已知矩形ABCD,AB=5,AD=3,矩形GBEF是由矩形ABCD绕点B顺时针旋转90°得到的,点H为CD边上一点,现将四边形ABHD沿BH折叠得到四边形A′BHD′,当点A′恰好落在EF上时,DH的长是( )
    A.175B.72C.185D.522
    【变式11-2】(2022秋·九年级课时练习)如图,在ΔABC中,AB=AC,直线DE垂直平分AB,把线段AE绕点E顺时针旋转90°,使点A落在直线DE上的点F处,联结CF、BF,线段AC、BF交于点G,如果CF//AB,那么∠AGB=______度.
    【变式11-3】(2022秋·黑龙江齐齐哈尔·九年级统考期末)如图,长方形ABCD中,AB=5,AD=6,点P是射线AD上一点,将△ABP沿BP折叠得到△A′BP,点A′恰好落在BC的垂直平分线l上,线段AP的长为______.
    【考点12 根据菱形的判定与性质求线段长】
    【例12】(2022春·江西赣州·八年级统考期末)已知四边形ABCD是边长为4的菱形,∠A=60°,点E,F分别是边AD,AB的中点,P为菱形边上的一点,且△PEF为直角三角形,那么BP 的长度为______.
    【变式12-1】(2022秋·福建福州·八年级福建省福州第一中学校考期末)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=12,则四边形CODE的周长为( )
    A.12B.18C.24D.30
    【变式12-2】(2022秋·河北保定·九年级统考期末)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
    (1)求证:四边形ABEF是菱形.
    (2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
    【变式12-3】(2022秋·福建三明·八年级统考期末)已知,在长方形纸片ABCD中,AB=4,BC=8.将纸片沿对角线BD翻折,点C落在点E处,BE交AD于点F.
    (1)如图1,连结AE.
    ①求证:△ABF≌△EDF;
    ②求证:AE∥BD;
    (2)如图2,将△BDE沿BD翻折回去,则点F正好落在BC边G处,连结FG,求FG的长.
    【考点13 根据菱形的判定与性质求角度】
    【例13】(2022春·浙江台州·八年级统考期末)如图,在平行四边形ABCD中,对角线AC,BD交于点O,过点O作EF⊥BD,交AD于点E,交BC于点F,连接EB,DF.
    (1)求证:四边形EBFD为菱形;
    (2)若∠BAD=105°,∠DBF=2∠ABE,求∠ABE的度数.
    【变式13-1】(2022春·安徽安庆·八年级统考期末)问题情境:
    在数学课外小组活动中,老师要求大家对“菱形的剪拼”问题进行探究.
    如图1,将边长为4,∠A=45度的菱形纸片ABCD沿着对角线BD剪开,得到△ABD和△B′DC.将△B′DC绕着点D逆时针旋转.
    初步探究:
    (1)“爱心小组”将△B′DC绕点D逆时针旋转,当DB′//AB时,∠BDB′的度数为________;
    再次探究:
    (2)“勤奋小组”将△B′DC绕点D逆时针旋转至图2,连接AC,BB′,此时四边形ABB′C是矩形,求∠BDB′的度数;
    深入探究:
    (3)“创新小组”将△B′DC绕点D逆时针旋转至图3,此时点B,D,B′恰好在一条直线上,延长BA,B′C交于点E,试判断四边形ADCE的形状,并说明理由.
    【变式13-2】(2022春·河北邯郸·八年级校联考期末)已知,四边形ABCO是菱形,延长AO到D点,使OD=OC,连接AC、BO相交于E点,连接CD.
    (1)求证:∠ACD=90°;
    (2)过A作AF⊥BC于F点.
    ①已知AD=15,AC=9,求AF的长;
    ②点M是对角线OB上一点,∠BAF=∠D,若△ABM是锐角三角形,求∠BAM的取值范围.
    【变式13-3】(2022春·山东济南·八年级统考期末)如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.
    (1)求边AB的长;
    (2)求∠BAC的度数;
    (3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.
    【考点14 根据菱形的判定与性质求面积】
    【例14】(2022春·江苏南通·八年级统考期末)在Rt△ABC中,∠ACB=90°.点D是边AB上的一点,连接CD.作AE∥DC,CE∥AB,连接ED.
    (1)如图1,当CD⊥AB时,求证:AC=ED;
    (2)如图2,当D是边AB的中点时,若AB=10,ED=8,求四边形ADCE的面积.
    【变式14-1】(2022春·浙江·八年级期末)如图,在▱ABCD中,AD=2AB,E,F分别为BC,AD的中点,作CG⊥AB于点G,GF的延长线交CD的延长线于点H.
    (1)求证:四边形ABEF是菱形.
    (2)当AB=5,BF=8时,
    ①求GH的长.
    ②如图2,CG交BF于点P,记△FGP的面积为S1,△BCP的面积为S2,则S2−S1的值为________.
    【变式14-2】(2022春·四川成都·八年级统考期末)菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
    (1)如图1,求∠BGD的度数;
    (2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
    (3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=43,求菱形ABCD的面积.
    【变式14-3】(2022春·山东德州·八年级统考期末)【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=3ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
    【考点15 根据正方形的判定与性质求线段长】
    【例15】(2022春·陕西渭南·八年级统考期末)如图,在正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则CG的长是_____.
    【变式15-1】(2022春·天津南开·八年级统考期末)如图,已知正方形ABCD的边长为8,点E,F分别在AD,CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为________.
    【变式15-2】(2022春·黑龙江齐齐哈尔·八年级统考期末)已知正方形ABCD的边长为2,以AD为一边向外作等腰直角三角形ADE,则点E到点B的距离为___________.
    【变式15-3】(2022春·河南新乡·八年级统考期末)如图1,在Rt△EAF中,∠A=90°,∠AEF,∠AFE的外角平分线交于点C,过点C分别作直线AB,AD的垂线,B,D为垂足.
    (1)【问题发现】∠ECF=______°(直接写出结果,不写解答过程).
    (2)【问题探究】①求证:四边形ABCD是正方形.
    ②若AF=DF=4,求BE的长.
    (3)【问题拓展】如图2,在△PQR中,∠QPR=45°,高PH=4,HR=1,则HQ的长度是______(直接写出结果,不写解答过程).
    【考点16 根据正方形的判定与性质求角度】
    【例16】(2022秋·重庆·九年级统考期末)如图,在正方形ABCD中,点M是AB上一点,点E是CM的中点,AE绕点E顺时针旋转90°得到EF,连接DE,DF.则∠CDF的度数为( )
    A.40°B.45°C.50°D.55°
    【变式16-1】(2022秋·福建泉州·七年级校考期中)如图所示,将三个大小相同的正方形的一个顶点重合放置,则α、β、γ三个角的数量关系为( )
    A.α+β+γ=90°B.α+β−γ=90°C.α−β+γ=90°D.α+2β−γ=90°
    【变式16-2】(2022春·全国·八年级期末)如图所示,正方形ABCD的边长为4,点P为对角线BD上一动点,点E在射线BC上.

    (1)填空:∠PBC=________度;
    (2)若点E为BC的中点,连接PE、PC,求PE+PC的最小值;
    (3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.
    【变式16-3】(2022春·北京海淀·八年级统考期末)如图,四边形ABCD是正方形,E是CD垂直平分线上的点,点E关于BD的对称点是E',直线DE与直线BE'交于点F.
    (1)若点E是CD边的中点,连接AF,则∠FAD=___°;
    (2)小明从老师那里了解到,只要点E不在正方形的中心,则直线AF与AD所夹锐角不变.他尝试改变点E的位置,计算相应角度,验证老师的说法.
    ①如图,将点E选在正方形内,且△EAB为等边三角形,求出直线AF与AD所夹锐角的度数;
    ②请你继续研究这个问题,可以延续小明的想法,也可用其它方法.
    我选择___小明的想法;(填“用”或“不用”)并简述求直线AF与AD所夹锐角度数的思路.
    【考点17 根据正方形的判定与性质求面积】
    【例17】(2022春·湖北武汉·八年级校联考期中)如图,在△ABC中,∠C=90°,∠BAC,∠ABC的角平分线交于点G,GE⊥BC于点E,GF⊥AC于点F.
    (1)求证:四边形GECF是正方形;
    (2)若AC=4,BC=3,求四边形GECF的面积.
    【变式17-1】(2022秋·江西南昌·九年级期中)如图,E、F在正方形ABCD的边上,∠EAF=45°.
    (1)△ABG是由△ADE旋转而来,旋转中心是什么?旋转角是多少度?
    (2)求证:GF=EF;
    (3)若BG=2,BF=3,求正方形ABCD的面积.
    【变式17-2】(2022·山东淄博·九年级统考期中)如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=13a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=13A1B2,….依次规律继续下去,则正方形AnBnCnDn的面积为____.
    【变式17-3】(2022春·陕西渭南·八年级统考期中)如图,点E是正方形ABCD外一点,连接AE、BE和DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=3.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为7;④S正方形ABCD=8+14.则正确结论的个数是( )
    A.1B.2C.3D.4
    【考点18 中点四边形】
    【例18】(2022春·安徽芜湖·八年级统考期中)如图,A1,B1,C1,D1分别是四边形ABCD各边的中点,且AC⊥BD,AC=6,BD=10.依次取A1B1,B1C1,C1D1,D1A1的中点A2,B2,C2,D2,再依次取A2B2,B2C2,C2D2,D2A2的中点A3,B3,C3,D3……以此类推取An﹣1Bn﹣1,Bn﹣1Cn﹣1,Cn﹣1Dn﹣1,Dn﹣1An﹣1的中点An,Bn,Cn,Dn,若四边形AnBnCnDn的面积为1532,则n的值为( )
    A.5B.6C.7D.8
    【变式18-1】(2022春·北京西城·八年级校考期中)四边形ABCD的对角线AC,BD交于点O,点M,N,P,Q分别为边AB,BC,CD,DA的中点.有下列四个推断:
    ①对于任意四边形ABCD,四边形MNPQ都是平行四边形;
    ②若四边形ABCD是平行四边形,则MP与NQ交于点O;
    ③若四边形ABCD是矩形,则四边形MNPQ也是矩形;
    ④若四边形MNPQ是正方形,则四边形ABCD也一定是正方形.
    所有正确推断的序号是( )
    A.①②B.①③C.②③D.③④
    【变式18-2】(2022春·福建福州·八年级福州华伦中学校考期中)已知:在矩形ABCD中,AB=6,AD=4.
    (1)如图1,E、F、G、H分别是AD,AB,BC,CD的中点、求证:四边形EFGH是菱形;
    (2)如图2,若菱形EFGH的三个顶点E、F、H分别在AD,AB,CD上,DE=14AD.
    ①连接BG,若BG=5,求AF的长;
    ②设AF=m,△GFB的面积为S,且S满足函数关系式S=3−12m.在自变量m的取值范围内,是否存在m,使菱形EPGH面积最大?若存在,请直接写出菱形EFGH面积最大值,若不存在,请说明理由.
    【变式18-3】(2022春·浙江·八年级期中)在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、M;
    (1)如图1,试判断四边形PQMN怎样的四边形,并证明你的结论;
    (2)若在AB上取一点E,连结DE,CE,恰好△ADE和△BCE都是等边三角形(如图2):
    ①判断此时四边形PQMN的形状,并证明你的结论;
    ②当AE=6,EB=3,求此时四边形PQMN的周长(结果保留根号).
    【考点19 特殊四边形的证明】
    【例19】(2022春·辽宁盘锦·八年级统考期中)如图,四边形ABCD是正方形,点E、F分别在边BC、AB上,点G在边BA的延长线上,且CE=BF=AG.
    (1)求证:①DE=DG ;②DE⊥DG;
    (2)尺规作图:以线段DE、DG为边作出正方形DEHG(保留作图痕迹不写作法和证明);
    (3)连接(2)中的FH,猜想四边形CEHF的形状,并证明你的猜想;
    (4)当CECB=1n时,求出S正方形ABCDS正方形DEHG的值.
    【变式19-1】(2022秋·河南平顶山·九年级统考期中)如图,这是一张三角形纸片,小红想用这张纸片剪出一个菱形图案,贴在她制作的手抄报,使∠B为菱形的一个内角.
    (1)请在图中画出一个符合要求的菱形,并简要说明画图步骤.
    (2)根据你的画图步骤,证明你所画的图形是一个菱形.
    【变式19-2】(2022秋·辽宁沈阳·九年级统考期中)已知正方形ABCD,E是射线AB上一动点,连接EC,点F在直线CD上,且EF=EC,将EF绕点E顺时针旋转90°得到EG,过点C作EG的平行线,交射线AD于点H,连接HG.
    (1)如图1,当点E在AB中点时,D,F重合,请判断四边形HCEG的形状并证明你的结论;
    (2)如图2,当点E在AB延长线上时,补全图形并回答下列问题:
    ①四边形HCEG的形状是否发生改变,请说明理由;
    ②连接HE,交DC于点M,若MC=5, EF=53,请直接写出ME的长.
    【变式19-3】(2022春·湖北武汉·八年级校联考期中)如图1,在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(a,m),B(b,0),C(c,0),D(d,n),且BD平分∠ABC,且a,b,c,d,m,n满足关系式d−a−c+b+|m﹣n|=0.
    (1)判断四边形ABCD的形状并证明你的结论.
    (2)在图1中,若∠ABC=60°,BD交y轴于点F,点P为线段FD上一点,连接PA,且点E与点B关于y轴对称,连接PE,若PE=PA,
    ①试求∠APE的度数;
    ②试求PFBF+PD的值.
    (3)如图2,在(2)的条件下,若PE与CD交于点M,且∠CME=45°,请直接写出BC+CEBC−CE的值 .
    【考点20 特殊四边形的动点问题】
    【例20】(2022春·浙江台州·八年级校联考期中)已知在平面直角坐标系中,四边形ACBO是矩形,A(a,0)、B(0,b)满足a−b+a−22=0,P是对角线AB上一动点,D是x轴正半轴上一点,且PO =PD,DE⊥AB于E.
    (1)求a、b的值.
    (2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.
    (3)若∠OPD =45°,求点D的坐标.
    【变式20-1】(2022春·湖北十堰·八年级统考期中)已知正方形ABCD,M为射线BD上一动点(M与点B,D不重合),以线段AM为一边作正方形AMEF,连接FD.
    (1)当点M在线段BD上时(如图1),线段BM与DF有怎样的关系?请直接写出结果______;
    (2)如图2,当点M在线段BD的延长线上时(1)中的结论是否仍然成立?请结合图2说明理由;
    (3)若正方形AMEF的边长为5,DM=1,求BF的长.
    【变式20-2】(2022春·江西赣州·八年级统考期中)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
    (1)如图1,连接AF、CE,求AF的长;
    (2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒1cm,设运动时间为t秒.
    ①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度,若不可能,请说明理由;
    ②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
    【变式20-3】(2022春·辽宁沈阳·八年级东北育才学校校考期中)按要求回答下列问题
    发现问题
    如图(1),在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,易证:EF=DF+BE.(不必证明)
    (1)类比延伸
    ①如图(2),在正方形ABCD中,如果点E,F分别是边BC,CD延长线上的动点,且∠EAF=45°则(1)中的结论还成立吗?请写出证明过程;
    ②如图(3),如果点E,F分别是边BC,CD延长线上的动点,且∠EAF=45°则EF,BE,DF之间的数量关系是________.(不要求证明)
    (2)拓展应用:如图(1),若正方形的ABCD边长为6,AE=35,求EF的长.
    【考点21 特殊四边形的最值问题】
    【例21】(2022秋·广东深圳·八年级校联考期末)如图,在长方形ABCD中,AB∥CD,BC∥AD,∠B=90°,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.
    (1)当点P是BC的中点时,求证:△ABP≌△ECP;
    (2)将△APB沿直线AP折叠得到△APB′,点B′落在长方形ABCD的内部,延长PB′交直线AD于点F.
    ①证明FA=FP,并求出在(1)条件下AF的值;
    ②连接B′C,直接写出△PCB′周长的最小值.
    【变式21-1】(2022春·湖南湘潭·八年级统考期末)如图,长方形OABC,是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,在AB上取一点M使得△CBM沿CM翻折后,点B落在x轴上,记作B′点,
    (1)求B'点的坐标;
    (2)求折痕CM所在直线的表达式;
    (3)求折痕CM上是否存在一点P,使PO+PB'最小?若存在,请求出最小值,若不存在,请说出理由.
    【变式21-2】(2022春·辽宁沈阳·八年级期末)在正方形ABCD中,BD是对角线,直线BD上有一点E(不与B、D重合),连接AE,过点E作EF⊥AE,交直线BC于点F.
    (1)如图,当点E在线段BD上时,求证:∠BAE=∠EFC;
    (2)当AE=CF,且AB=23+2时,直接写出线段BE的长;
    (3)设S=2AE+BE,AB=2,当S取最小值时,直接写出S2的值.
    【变式21-3】(2022春·河北秦皇岛·八年级统考期末)在▱ABCD中,AB=6,BC=8.
    (1)如图①,将▱ABCD沿直线BE折叠,使点A的对应点F落在BC边上,求证:四边形ABFE是菱形.
    (2)如图②,若▱ABCD是矩形,
    ①按(1)中操作进行,求证:四边形ABFE是正方形.
    ②在矩形ABCD中折叠出一个菱形,并使菱形的各个顶点都在矩形的边上,则菱形面积的最大值为______,最小值为______.
    【考点22 特殊四边形的存在性问题】
    【例22】(2022春·湖北恩施·八年级统考期末)如图,矩形纸片ABCD置于坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点A(﹣3,4),翻折矩形纸片使点D落在对角线AC上的H处,AG是折痕.
    (1)求DG的长;
    (2)在x轴上是否存在点N,使BN+DN的值最小,若存在,求出这个最小值及点N的坐标;若不存在.请说明理由;
    (3)点P从点A出发,沿折线A﹣B﹣C运动,到达点C时停止运动,是否存在一点P,使△PBM是等腰三角形,若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    【变式22-1】(2022春·重庆大足·八年级统考期末)已知:在平面直角坐标系中,直线l1:y=−x+2与x轴,y轴分别交于A、B两点,直线l2经过点A,与y轴交于点C(0,−4).
    (1)求直线l2的解析式;
    (2)如图1,点P为直线l1一个动点,若△PAC的面积等于10时,请求出点P的坐标;
    (3)如图2,将△ABC沿着x轴平移,平移过程中的△ABC记为△A1B1C1,请问在平面内是否存在点D,使得以A1、C1、C、D为顶点的四边形是菱形?若存在,直接写出点D的坐标.
    【变式22-2】(2022春·湖北孝感·七年级统考期末)正方形ABCD在平面直角坐标系中的位置如图所示,AD ∥ BC ∥ x轴,AD与y轴交于点E,OE=1,且AE,DE的长满足AE−3+|DE−1|=0.
    (1)求点A的坐标;
    (2)若P(−2,−1),
    ①求△EPC面积;
    ②正方形ABCD的边CD上是否存在点M,使S△ECM=S△EPM?若存在,请求出点M的坐标;若不存在,请说明理由.
    【变式22-3】(2022春·山东济南·八年级统考期末)已知四边形ABCD和四边形AEFG均为正方形,连接BE、DG.直线BE与DG交于点H.
    (1)如图1,当点E在AD上时,线段BE与DG的数量关系是 ,∠BHD的度数为 ;
    (2)如图2,将正方形AEFG绕点A旋转任意角度.
    ①请你判断(1)中的结论是否仍然成立,并说明理由;
    ②当点H在直线AD左侧时,连接AH,则存在实数m、n满足等式:m·AH+DH=n·BH,猜想m、n的值,并予以证明;
    (3)若AB=5,AE=1,则正方形AEFG绕点A旋转的过程中,点F、H是否能重合?若能,请直接写出此时线段BG的长;若不能,请说明理由.
    相关试卷

    专题13.3 期中期末专项复习之整式乘法与因式分解十八大必考点-2022-2023学年七年级数学下册举一反三系列(苏科版): 这是一份专题13.3 期中期末专项复习之整式乘法与因式分解十八大必考点-2022-2023学年七年级数学下册举一反三系列(苏科版),文件包含专题133期中期末专项复习之整式乘法与因式分解十八大必考点举一反三苏科版原卷版docx、专题133期中期末专项复习之整式乘法与因式分解十八大必考点举一反三苏科版解析版docx等2份试卷配套教学资源,其中试卷共90页, 欢迎下载使用。

    专题13.2 期中期末专项复习之幂的运算十六大必考点-2022-2023学年七年级数学下册举一反三系列(苏科版): 这是一份专题13.2 期中期末专项复习之幂的运算十六大必考点-2022-2023学年七年级数学下册举一反三系列(苏科版),文件包含专题132期中期末专项复习之幂的运算十六大必考点举一反三苏科版原卷版docx、专题132期中期末专项复习之幂的运算十六大必考点举一反三苏科版解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    专题13.1 期中期末专项复习之平面图形的认识(二)二十五大必考点-2022-2023学年七年级数学下册举一反三系列(苏科版): 这是一份专题13.1 期中期末专项复习之平面图形的认识(二)二十五大必考点-2022-2023学年七年级数学下册举一反三系列(苏科版),文件包含专题131期中期末专项复习之平面图形的认识二二十五大必考点举一反三苏科版原卷版docx、专题131期中期末专项复习之平面图形的认识二二十五大必考点举一反三苏科版解析版docx等2份试卷配套教学资源,其中试卷共170页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题13.3 期中期末专项复习之中心对称图形——平行四边形二十二大必考点-2022-2023学年八年级数学下册举一反三系列(苏科版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map