搜索
    上传资料 赚现金
    英语朗读宝

    最新高考数学一轮复习【讲通练透】 第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲通)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(原卷版).docx
    • 解析
      第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(解析版).docx
    第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(原卷版)第1页
    第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(原卷版)第2页
    第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(原卷版)第3页
    第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(解析版)第1页
    第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(解析版)第2页
    第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(解析版)第3页
    还剩15页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新高考数学一轮复习【讲通练透】 第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲通)

    展开

    这是一份最新高考数学一轮复习【讲通练透】 第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲通),文件包含第01讲空间几何体的结构特征表面积与体积六大题型讲义原卷版docx、第01讲空间几何体的结构特征表面积与体积六大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
    2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
    3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
    4、重视错题。错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    第01讲 空间几何体的结构特征、表面积
    与体积
    目录

    知识点一:构成空间几何体的基本元素—点、线、面
    (1)空间中,点动成线,线动成面,面动成体.
    (2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).
    知识点二:简单凸多面体—棱柱、棱锥、棱台
    1、棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.
    (1)斜棱柱:侧棱不垂直于底面的棱柱;
    (2)直棱柱:侧棱垂直于底面的棱柱;
    (3)正棱柱:底面是正多边形的直棱柱;
    (4)平行六面体:底面是平行四边形的棱柱;
    (5)直平行六面体:侧棱垂直于底面的平行六面体;
    (6)长方体:底面是矩形的直平行六面体;
    (7)正方体:棱长都相等的长方体.
    2、棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.
    (1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;
    (2)正四面体:所有棱长都相等的三棱锥.
    3、棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.
    简单凸多面体的分类及其之间的关系如图所示.
    知识点三:简单旋转体—圆柱、圆锥、圆台、球
    1、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.
    2、圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.
    3、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.
    4、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).
    知识点四:组合体
    由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.
    知识点五:表面积与体积计算公式
    表面积公式
    体积公式
    知识点六:空间几何体的直观图
    1、斜二测画法
    斜二测画法的主要步骤如下:
    (1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的,,建立直角坐标系.
    (2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于轴的线段,在直观图中画成平行于,,使(或),它们确定的平面表示水平平面.
    (3)画出对应图形.在已知图形平行于轴的线段,在直观图中画成平行于轴的线段,且长度保持不变;在已知图形平行于轴的线段,在直观图中画成平行于轴,且长度变为原来的一般.可简化为“横不变,纵减半”.
    (4)擦去辅助线.图画好后,要擦去轴、轴及为画图添加的辅助线(虚线).被挡住的棱画虚线.
    注:直观图和平面图形的面积比为.
    2、平行投影与中心投影
    平行投影的投影线是互相平行的,中心投影的投影线相交于一点.
    题型一:空间几何体的结构特征
    例1.(2023·安徽·高三校联考阶段练习)已知几何体,“有两个面平行,其余各面都是平行四边形”是“几何体为棱柱”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    例2.(2023·全国·高三对口高考)设有三个命题;甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是平行六面体.以上命题中真命题的个数为( )
    A.0个B.1个C.2个D.3个
    例3.(2023·全国·高三专题练习)下列命题:
    ①有两个面平行,其他各面都是平行四边形的几何体叫做棱柱;
    ②有两侧面与底面垂直的棱柱是直棱柱;
    ③过斜棱柱的侧棱作棱柱的截面,所得图形不可能是矩形;
    ④所有侧面都是全等的矩形的四棱柱一定是正四棱柱.
    其中正确命题的个数为( )
    A.0B.1C.2D.3
    变式1.(2023·新疆·统考模拟预测)下列命题中正确的是( )
    A.有两个平面平行,其余各面都是平行四边形的几何体是棱柱.
    B.各个面都是三角形的几何体是三棱锥.
    C.夹在圆柱的两个平行截面间的几何体还是一个旋转体.
    D.圆锥的顶点与底面圆周上任意一点的连线都是母线.
    变式2.(2023·全国·高三专题练习)下列说法正确的是( )
    A.三角形的直观图是三角形B.直四棱柱是长方体
    C.平行六面体不是棱柱D.两个平面平行,其余各面是梯形的多面体是棱台
    变式3.(2023·全国·高三专题练习)给出下列命题:
    ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
    ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;
    ③棱台的上、下底面可以不相似,但侧棱长一定相等.
    其中正确命题的个数是( )
    A.B.C.D.
    变式4.(2023·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是( )
    A. 是棱台B. 是圆台
    C. 不是棱柱D. 是棱锥
    【解题方法总结】
    空间几何体结构特征的判断技巧
    (1)紧扣结构特征是判断的关键,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.
    (2)说明一个命题是错误的,只要举出一个反例即可.
    题型二:空间几何体的表面积
    例4.(2023·湖北武汉·统考模拟预测)已知某圆锥的母线长、底面圆的直径都等于球的半径,则球与圆锥的表面积之比为( )
    A.8B.C.D.
    例5.(2023·河南郑州·统考模拟预测)在一个正六棱柱中挖去一个圆柱后,剩余部分几何体如图所示.已知正六棱柱的底面正六边形边长为3cm,高为4cm,内孔半径为1cm,则此几何体的表面积是( ).

    A.B.
    C.D.
    例6.(2023·安徽安庆·安庆一中校考三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径,圆柱体部分的高,圆锥体部分的高,则这个陀螺的表面积(单位:)是( )

    A.B.
    C.D.
    变式5.(2023·西藏拉萨·统考一模)位于徐州园博园中心位置的国际馆(一云落雨),使用现代科技雾化“造云”,打造温室客厅,如图,这个国际馆中3个展馆的顶部均采用正四棱锥这种经典几何形式,表达了理性主义与浪漫主义的对立与统一.其中最大的是3号展馆,其顶部所对应的正四棱锥底面边长为19.2m,高为9m,则该正四棱锥的侧面面积与底面面积之比约为( )(参考数据:)
    A.2B.1.71C.1.37D.1
    变式6.(2023·湖南长沙·高三校联考阶段练习)为了给热爱朗读的师生提供一个安静独立的环境,某学校修建了若干“朗读亭”.如图所示,该朗读亭的外形是一个正六棱柱和正六棱锥的组合体,正六棱柱两条相对侧棱所在的轴截面为正方形,若正六棱锥的高与底面边长的比为,则正六棱锥与正六棱柱的侧面积的比值为( )
    A.B.C.D.
    变式7.(2023·河北·统考模拟预测)《九章算术》是我国古代的数学名著.其“商功”中记载:“正四面形棱台(即正四棱台)建筑物为方亭.”现有如图所示的烽火台,其主体部分为一方亭,将它的主体部分抽象成的正四棱台(如图所示),其中上底面与下底面的面积之比为,方亭的高为棱台上底面边长的倍.已知方亭的体积为,则该方亭的表面积约为( )(,,)
    A.B.C.D.
    变式8.(2023·甘肃张掖·高台县第一中学校考模拟预测)仿钧玫瑰紫釉盘是收藏于北京故宫博物院的一件明代宣德年间产的瓷器.该盘盘口微撇,弧腹,圈足.足底切削整齐.通体施玫瑰紫釉,釉面棕眼密集,美不胜收.仿钧玫瑰紫釉盘的形状可近似看成是圆台和圆柱的组合体,其口径为15.5cm,足径为9.2cm,顶部到底部的高为4.1cm,底部圆柱高为0.7cm,则该仿钧玫瑰紫釉盘圆台部分的侧面积约为( )(参考数据:π的值取3,)

    A.B.C.D.
    【解题方法总结】
    (1)多面体的表面积是各个面的面积之和.
    (2)旋转体的表面积是将其展开后,展开图的面积与底面面积之和.
    (3)组合体的表面积求解时注意对衔接部分的处理.
    题型三:空间几何体的体积
    例7.(2023·广东梅州·统考三模)在马致远的《汉宫秋》楔子中写道:“毡帐秋风迷宿草,穹庐夜月听悲笳.”毡帐是古代北方游牧民族以为居室、毡制帷幔.如图所示,某毡帐可视作一个圆锥与圆柱的组合体,圆锥的高为4,侧面积为,圆柱的侧面积为,则该毡帐的体积为( )

    A.B.C.D.
    例8.(2023·重庆沙坪坝·高三重庆一中校考阶段练习)若某圆锥的侧面展开图是一个半径为2的半圆面,其内接正四棱柱的高为,则此正四棱柱的体积是( )
    A.B.C.D.
    例9.(2023·山东青岛·高三统考期中)已知正四棱锥的各顶点都在同一个球面上,球的体积为,则该正四棱锥的体积最大值为( )
    A.18B.C.D.27
    变式9.(2023·湖北武汉·高三统考开学考试)攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为最尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知正四棱锥的底面边长为米,侧棱长为5米,则其体积为( )立方米.

    A.B.24C.D.72
    变式10.(2023·广东河源·高三校联考开学考试)最早的测雨器记载见于南宋数学家秦九韶所著的《数书九章》(1247年).该书第二章为“天时类”,收录了有关降水量计算的四个例子,分别是“天池测雨”、“圆罂测雨”、“峻积验雪”和“竹器验雪”.如图“竹器验雪”法是下雪时用一个圆台形的器皿收集雪量(平地降雪厚度器皿中积雪体积除以器皿口面积),已知数据如图(注意:单位),则平地降雪厚度的近似值为( )

    A.B.C.D.
    变式11.(2023·浙江·校联考模拟预测)如图是我国古代量粮食的器具“升”,其形状是正四棱台,上、下底面边长分别为20cm和10cm,侧棱长为cm.“升”装满后用手指或筷子沿升口刮平,这叫“平升”.则该“升”的“平升”约可装( )

    A.1.5LB.1.7LC.2.3LD.2.7L
    【解题方法总结】
    求空间几何体的体积的常用方法
    题型四:直观图
    例10.(2023·辽宁锦州·渤海大学附属高级中学校考模拟预测)已知用斜二测画法画梯形OABC的直观图如图所示,,,,轴,,为的三等分点,则四边形OABC绕y轴旋转一周形成的空间几何体的体积为 .

    例11.(2023·全国·高三对口高考)若正用斜二测画法画出的水平放置图形的直观图为,当的面积为时,的面积为 .
    例12.(2023·四川成都·高三统考阶段练习)用斜二测画法画出的某平面图形的直观图如图所示,边与平行于轴.已知四边形的面积为,则原平面图形的面积为 .
    变式12.(2023·全国·高三专题练习)如图,是用斜二测画法得到的△AOB的直观图,其中则AB的长度为 .
    变式13.(2023·上海浦东新·高三上海市川沙中学校考期末)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示).,则这块菜地的面积为
    变式14.(2023·上海宝山·高三上海交大附中校考开学考试)我们知道一条线段在“斜二测”画法中它的长度可能会发生变化的,现直角坐标系平面上一条长为4cm线段AB按“斜二测”画法在水平放置的平面上画出为,则最短长度为 cm(结果用精确值表示)
    变式15.(2023·陕西延安·校考一模)如图,梯形ABCD是水平放置的一个平面图形的直观图,其中,,,则原图形的面积为 .
    变式16.(2023·全国·高三专题练习)如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的面积是 .
    【解题方法总结】
    斜二测法下的直观图与原图面积之间存在固定的比值关系:.
    题型五:展开图
    例13.(2023·山东青岛·统考三模)已知圆锥的底面半径为1,侧面展开图为半圆,则该圆锥内半径最大的球的表面积为 .
    例14.(2023·全国·高三专题练习)如图,在直三棱柱的侧面展开图中,B,C是线段AD的三等分点,且.若该三棱柱的外接球O的表面积为12π,则 .
    例15.(2023·上海普陀·高三统考期中)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场预定区域成果着陆.如图,在返回过程中使用的主降落伞外表面积达到1200平方米,若主降落伞完全展开后可以近似看着一个半球,则完全展开后伞口的直径约为 米(精确到整数)
    变式17.(2023·山东淄博·统考一模)已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为 .
    变式18.(2023·安徽·蚌埠二中校联考模拟预测)如图,在三棱锥P-ABC的平面展开图中,,,,,,则三棱锥外接球表面积为 .
    变式19.(2023·全国·高三专题练习)已知三棱锥P-ABC的底面ABC为等边三角形.如图,在三棱锥P-ABC的平面展开图中,P,F,E三点共线,B,C,E三点共线,,,则PB= .
    变式20.(2023·安徽黄山·统考一模)如图,在四棱锥P-ABCD的平面展开图中,正方形ABCD的边长为4,是以AD为斜边的等腰直角三角形,,则该四棱锥外接球被平面PBC所截的圆面的面积为 .
    变式21.(2023·山西大同·高三统考阶段练习)如图,在三棱锥的平面展开图中,,,,,,则三棱锥的外接球的表面积为 .

    【解题方法总结】
    多面体表面展开图可以有不同的形状,应多实践,观察并大胆想象立体图形与表面展开图的关系,一定先观察立体图形的每一个面的形状.
    题型六:最短路径问题
    例16.(2023·福建福州·高一福建省福州屏东中学校考期末)如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P出发,绕圆锥爬行一周后回到点P处,若该小虫爬行的最短路程为,则这个圆锥的体积为( ).

    A.B.C.D.
    例17.(2023·陕西宝鸡·高一统考期末)盲盒是一种深受大众喜爱的玩具,某盲盒生产厂商要为棱长为的正四面体魔方设计一款正方体的包装盒,需要保证该魔方可以在包装盒内任意转动,则包装盒的棱长最短为( )
    A.B.C.D.
    例18.(2023·全国·高一专题练习)如图,已知正四棱椎的侧棱长为,侧面等腰三角形的顶角为,则从A点出发环绕侧面一周后回到A点的最短路程为( )

    A.B.C.D.6
    变式22.(2023·安徽·高二马鞍山二中校联考阶段练习)我们知道立体图形上的最短路径问题通常是把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.请根据此方法求函数的最小值( )
    A.B.C.D.
    变式23.(2023·全国·高三专题练习)盲盒是一种深受大众喜爱的玩具,某盲盒生产厂商要为棱长为的正四面体魔方设计一款正方体的包装盒,需要保证该魔方可以在包装盒内任意转动,则包装盒的棱长最短为( )
    A.B.C.D.
    变式24.(2023·山东济宁·高一校考阶段练习)如图,一个矩形边长为1和4,绕它的长为的边旋转二周后所得如图的一开口容器(下表面密封),是中点,现有一只妈蚁位于外壁处,内壁处有一米粒,若这只蚂蚁要先爬到上口边沿再爬到点处取得米粒,则它所需经过的最短路程为( )
    A.B.C.D.
    变式25.(2023·全国·高一专题练习)如图所示,在正三棱柱中,,,由顶点沿棱柱侧面(经过棱)到达顶点,与的交点记为,则从点经点到的最短路线长为( )
    A.B.C.4D.
    变式26.(2023·河北·高三专题练习)如图,正方体的棱长为,点为的中点,在对角面上取一点,使最小,其最小值为
    【解题方法总结】
    此类最大路径问题:大胆展开,把问题变为平面两点间线段最短问题.
    1.(2023•乙卷(理))已知圆锥的底面半径为,为底面圆心,,为圆锥的母线,,若的面积等于,则该圆锥的体积为
    A.B.C.D.
    2.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为
    A.B.C.D.
    3.(多选题)(2022•新高考Ⅱ)如图,四边形为正方形,平面,,.记三棱锥,,的体积分别为,,,则
    A.B.C.D.
    考点要求
    考题统计
    考情分析
    (1)认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构.
    (2)知道球、棱(圆)柱、棱(圆)锥、棱(圆)台的表面积和体积的计算公式,并能解决简单的实际问题.
    (3)能用斜二测画法画出简单空间图形的直观图.
    2023年乙卷(理)第8题,5分
    2023年甲卷(文)第10题,5分
    2023年天津卷第8题,5分
    2023年II卷第14题,5分
    2023年I卷第12题,5分
    (1)掌握基本空间图形及其简单组合体的概念和基本特征,能够解决简单的实际问题;
    (2)多面体和球体的相关计算问题是近几年考查的重点;
    (3)运用图形的概念描述图形的基本关系和基本结果,突出考查直观想象和逻辑推理.
    表面积
    柱体
    为直截面周长
    锥体
    台体

    体积
    柱体
    锥体
    台体

    公式法
    规则几何体的体积,直接利用公式
    割补法
    把不规则的几何体分割成规则的几何体,或者把不规则的几何体补成规则的几何体
    等体积法
    通过选择合适的底面来求几何体体积的一种方法,特别是三棱锥的体积

    相关试卷

    最新高考数学一轮复习【讲通练透】 第01讲 导数的概念与运算(三大题型)(讲通):

    这是一份最新高考数学一轮复习【讲通练透】 第01讲 导数的概念与运算(三大题型)(讲通),文件包含第01讲导数的概念与运算三大题型讲义原卷版docx、第01讲导数的概念与运算三大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。

    2024年高考数学一轮复习讲练测(新教材新高考)第04讲 数列的通项公式(十六大题型)(讲义)(原卷版+解析):

    这是一份2024年高考数学一轮复习讲练测(新教材新高考)第04讲 数列的通项公式(十六大题型)(讲义)(原卷版+解析),共100页。试卷主要包含了个球等内容,欢迎下载使用。

    第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)-备战2024年高考数学一轮专题复习(新教材新高考):

    这是一份第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)-备战2024年高考数学一轮专题复习(新教材新高考),文件包含第01讲空间几何体的结构特征表面积与体积六大题型讲义原卷版docx、第01讲空间几何体的结构特征表面积与体积六大题型讲义解析版docx、欢迎参与讲练测问卷调研docx等3份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map