最新高考数学一轮复习【讲通练透】 第01讲 统计(练透)
展开2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题。错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
第01讲 统计
(模拟精练+真题演练)
1.(2023·宁夏石嘴山·平罗中学校考二模)某企业不断自主创新提升技术水平,积极调整企业旗下的甲、乙、丙、丁、戊等种系列产品的结构比例,近年来取得了显著效果.据悉该企业年种系列产品年总收入是年的倍,其中种系列产品的年收入构成比例如图所示.则下列说法错误的是( )
A.年甲系列产品收入比年的多
B.年乙和丙系列产品收入之和比年的企业年总收入还多
C.年丁系列产品收入是年丁系列产品收入的
D.年戊系列产品收入是年戊系列产品收入的倍
2.(2023·江西九江·统考一模)为了学习、宣传和践行党的二十大精神,某班组织全班学生开展了以“学党史、知国情、圆梦想”为主题的党史暨时政知识竞赛活动.已知该班男生人,女生人,根据统计分析,男生组成绩和女生组成绩的方差分别为.记该班成绩的方差为,则下列判断正确的是( )
A.B.C.D.
3.(2023·四川成都·校联考二模)某重点中学为了解800名新生的身体素质,将这些学生编号为001 ,002,003,…,800,从这些新生中用系统抽样的方法抽取80名学生进行体质测验,若编号为006的学生被抽到,则下列编号对应的学生没有被抽到的是( )
A.036B.216C.426D.600
4.(2023·河南开封·统考模拟预测)某学校组建了演讲,舞蹈,合唱,绘画,英语协会五个社团,全校2000名学生每人都参加且只参加其中二个社团,校团委从这2000名学生中随机选取部分学生进行调查,并将调查结果绘制成如下不完整的两个统计图:
则选取的学生中,参加绘画社团的学生数为( )
A.20B.30C.40D.45
5.(2023·河南·校联考二模)某银行为客户定制了A,B,C,D,E共5个理财产品,并对5个理财产品的持有客户进行抽样调查,得出如下的统计图:
用该样本估计总体,以下四个说法错误的是( )
A.44~56周岁人群理财人数最多
B.18~30周岁人群理财总费用最少
C.B理财产品更受理财人青睐
D.年龄越大的年龄段的人均理财费用越高
6.(2023·陕西西安·西安市大明宫中学校考模拟预测)一组数据由个数组成,其中这个数的平均数为,若在该组数据中再插入一个数字,则这组数据( )
A.平均数变大B.方差变大
C.平均数变小D.方差变小
7.(2023·福建福州·校考模拟预测)在高三某次模拟考试中,甲、乙两个班级的数学成绩统计如下表:
则两个班所有学生的数学成绩的方差为( )
A.B.13C.D.
8.(2023·四川凉山·三模)样本数据的平均数为4,方差为1,则样本数据的平均数,方差分别为( )
A.9,4B.9,2C.4,1D.2,1
9.(多选题)(2023·黑龙江大庆·统考模拟预测)若甲组样本数据(数据各不相同)的平均数为3,乙组样本数据的平均数为5,下列说错误的是( )
A.的值不确定
B.乙组样本数据的方差为甲组样本数据方差的2倍
C.两组样本数据的极差可能相等
D.两组样本数据的中位数可能相等
10.(多选题)(2023·辽宁·大连二十四中校联考模拟预测)大连市教育局为了解二十四中学、第八中学、育明中学三所学校的学生文学经典名著的年阅读量,采用样本比例分配的分层随机抽样抽取了一个容量为120的样本.其中,从二十四中学抽取容量为35的样本,平均数为4,方差为9;从第八中学抽取容量为40的样本,平均数为7,方差为15;从育明中学抽取容量为45的样本,平均数为8,方差为21,据此估计,三所学校的学生文学经典名著的年阅读量的( )
A.均值为6.3B.均值为6.5
C.方差为17.52D.方差为18.25
11.(多选题)(2023·海南海口·海南华侨中学校考二模)为了向社会输送优秀毕业生,中等职业学校越来越重视学生的实际操作(简称实操)能力的培养.中职生小王在对口工厂完成实操产品100件,质检人员测量其质量(单位:克),将所得数据分成5组:.根据所得数据制成如图所示的频率分布直方图,其中质量在内的为优等品.对于这100件产品,下列说法正确的是( )
A.质量的平均数为99.7克(同一区间的平均数用区间中点值代替)B.优等品有45件
C.质量的众数在区间内D.质量的中位数在区间内
12.(多选题)(2023·重庆巴南·统考一模)某市为响应教育部《切实保证中小学每天一小时校园体育活动的规定》号召,提出“保证中小学生每天一小时校园体育活动”的倡议.在某次调研中,甲、乙两个学校学生一周的运动时间统计如下表:
记这两个学校学生一周运动的总平均时间为,方差为,则( )
A.B.
C.D.
13.(2023·河南信阳·信阳高中校考模拟预测)现有一组数据:共200项,(是这一组数据的第项),有以下结论:
①这组数据的极差为19;
②这组数据的中位数为14;
③这组数据的平均数为13.5;
④.
其中正确结论的个数为 .
14.(2023·河北保定·河北省唐县第一中学校考二模)由正整数组成的一组数据共有4个,其中位数,平均数,方差均等于4,则这组数据的极差为 .
15.(2023·云南昭通·校联考模拟预测)军训中某人对目标靶进行8次射击,已知前7次射击分别命中7环、9环、7环、10环、8环、9环、6环.若第8次射击结果不低于这8次射击环数的平均数且不高于这8次射击环数的75%分位数,则此人第8次射击的结果可能是 环.(写出有一个符合题意的值即可)
16.(2023·江苏南通·统考模拟预测)为了解某大学射击社团的射击水平,分析组用分层抽样的方法抽取了6名老学员和2名新学员的某次射击成绩进行分析,经测算,6名老学员的射击成绩样本均值为8(单位:环),方差为(单位:环2);2名新学员的射击成绩分别为3环和5环,则抽取的这8名学员的射击成绩的方差为 环2.
17.(2023·湖北襄阳·襄阳四中校考模拟预测)某次视力检测中,甲班12个人视力检测数据的平均数是1,方差为1;乙班8个人的视力检测数据的平均数是1.5,方差为0.25,则这20个人的视力的方差为 .
18.(2023·福建·统考一模)以下为甲、乙两组按从小到大顺序排列的数据:
甲组:14,30,37,a,41,52,53,55,58,80;
乙组:17,22,32,43,45,49,b,56.
若甲组数据的第40百分位数和乙组数据的平均数相等,则 .
19.(2023·广西玉林·统考模拟预测)某地区期末进行了统一考试,为做好本次考试的评价工作,现从中随机抽取了名学生的成绩,经统计,这批学生的成绩全部介于至之间,将数据按照,,,,,分成组,制成了如图所示的频率分布直方图.
(1)求频率分布直方图中的值;在这名学生中用分层抽样的方法从成绩在,,的三组中抽取了人,再从这人中随机抽取人,记为人中成绩在的人数,求;
(2)规定成绩在的为等级,成绩在的为等级,其它为等级.以样本估计总体,用频率代替概率.从所有参加考试的同学中随机抽取人,求获得等级的人数不少于人的概率.
20.(2023·河南郑州·校联考二模)“学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员,面向全社会的优质平台,现日益成为老百姓了解国家动态,紧跟时代脉搏的热门APP.某市宣传部门为了解全民利用“学习强国”了解国家动态的情况,从全市抽取4000名人员进行调查,统计他们每周利用“学习强国”的时长,绘制如图所示的频率分布直方图(每周利用“学习强国”的时长均分布在).
(1)求实数a的值,并求所有被抽查人员利用“学习强国”的平均时长(同一组数据用该区间的中点值作代表);
(2)宣传部为了了解大家利用“学习强国”的具体情况,准备采用分层抽样的方法从和组中抽取50人了解情况,则两组各抽取多少人?再利用分层抽样从抽取的50人中选5人参加一个座谈会,现从参加座谈会的5人中随机抽取2人发言,求组中恰好有1人发言的概率.
21.(2023·河南·统考三模)某学校参加全国数学竞赛初赛(满分100分).该学校从全体参赛学生中随机抽取了200名学生的初赛成绩绘制成频率分布直方图如图所示:
(1)根据频率分布直方图给出的数据估计此次初赛成绩的中位数和平均分数;
(2)从抽取的成绩在90~100的学生中抽取3人组成特训组,求学生被选的概率.
1.(2021•天津)从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:,,,,,,,并整理得到如下的频率分布直方图,则评分在区间,内的影视作品数量是
A.20B.40C.64D.80
2.(2021•甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是
A.该地农户家庭年收入低于4.5万元的农户比率估计为
B.该地农户家庭年收入不低于10.5万元的农户比率估计为
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
3.(2020•新课标Ⅲ)在一组样本数据中,1,2,3,4出现的频率分别为,,,,且,则下面四种情形中,对应样本的标准差最大的一组是
A.,B.,
C.,D.,
4.(2020•新课标Ⅲ)设一组样本数据,,,的方差为0.01,则数据,,,的方差为
A.0.01B.0.1C.1D.10
5.(2020•天津)从一批零件中抽取80个,测量其直径(单位:,将所得数据分为9组:,,,,,,,,,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间,内的个数为
A.10B.18C.20D.36
6.(多选题)(2023•新高考Ⅰ)有一组样本数据,,,,其中是最小值,是最大值,则
A.,,,的平均数等于,,,的平均数
B.,,,的中位数等于,,,的中位数
C.,,,的标准差不小于,,,的标准差
D.,,,的极差不大于,,,的极差
7.(多选题)(2021•新高考Ⅰ)有一组样本数据,,,,由这组数据得到新样本数据,,,,其中,2,,,为非零常数,则
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
8.(多选题)(2021•新高考Ⅱ)下列统计量中,能度量样本,,,的离散程度的有
A.样本,,,的标准差B.样本,,,的中位数
C.样本,,,的极差D.样本,,,的平均数
9.(2023•上海)现有某地一年四个季度的(亿元),第一季度为232(亿元),第四季度为241(亿元),四个季度的逐季度增长,且中位数与平均数相同,则该地一年的为 .
10.(2020•江苏)已知一组数据4,,,5,6的平均数为4,则的值是 .
11.(2020•上海)已知有四个数1,2,,,这四个数的中位数是3,平均数是4,则 .
12.(2023•乙卷)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,,2,.试验结果如下:
记,2,,,记,,,的样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
13.(2021•乙卷)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
班级
人数
平均分数
方差
甲
40
70
5
乙
60
80
8
学校
人数
平均运动时间
方差
甲校
2000
10
3
乙校
3000
8
2
试验序号
1
2
3
4
5
6
7
8
9
10
伸缩率
545
533
551
522
575
544
541
568
596
548
伸缩率
536
527
543
530
560
533
522
550
576
536
旧设备
9.8
10.3
10.0
10.2
9.9
9.8
10.0
10.1
10.2
9.7
新设备
10.1
10.4
10.1
10.0
10.1
10.3
10.6
10.5
10.4
10.5
最新高考数学一轮复习【讲通练透】 第01讲 数列的基本知识与概念(练透): 这是一份最新高考数学一轮复习【讲通练透】 第01讲 数列的基本知识与概念(练透),文件包含第01讲数列的基本知识与概念练习原卷版docx、第01讲数列的基本知识与概念练习解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
最新高考数学一轮复习【讲通练透】 第01讲 三角函数的概念与诱导公式(练透): 这是一份最新高考数学一轮复习【讲通练透】 第01讲 三角函数的概念与诱导公式(练透),文件包含第01讲三角函数的概念与诱导公式练习原卷版docx、第01讲三角函数的概念与诱导公式练习解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
最新高考数学一轮复习【讲通练透】 第01讲 平面向量的概念、线性运算及坐标表示(练透): 这是一份最新高考数学一轮复习【讲通练透】 第01讲 平面向量的概念、线性运算及坐标表示(练透),文件包含第01讲平面向量的概念线性运算及坐标表示练习原卷版docx、第01讲平面向量的概念线性运算及坐标表示练习解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。