![1.6 平行线几何模型(M模型)(巩固培优篇) 浙教版数学七年级下册基础知识讲与练(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/15418390/0-1709265380453/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![1.6 平行线几何模型(M模型)(巩固培优篇) 浙教版数学七年级下册基础知识讲与练(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/15418390/0-1709265380507/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![1.6 平行线几何模型(M模型)(巩固培优篇) 浙教版数学七年级下册基础知识讲与练(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/15418390/0-1709265380544/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
1.6 平行线几何模型(M模型)(巩固培优篇) 浙教版数学七年级下册基础知识讲与练(含答案)
展开
这是一份1.6 平行线几何模型(M模型)(巩固培优篇) 浙教版数学七年级下册基础知识讲与练(含答案),共51页。
专题1.16 平行线几何模型(M模型)(巩固培优篇)(专项练习)1.已知直线AB//CD,EF是截线,点M在直线AB、CD之间.(1) 如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;(2) 如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.2.阅读下面内容,并解答问题.已知:如图1,,直线分别交,于点,.的平分线与的平分线交于点.求证:;填空,并从下列①、②两题中任选一题说明理由.我选择 题.①在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为 .②如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为 .3.已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.如图,当点在线段上运动时,试说明∠1+∠3=∠2;当点P在线段EF外运动时有两种情况.①如图2写出∠1,∠2,∠3之间的关系并给出证明;②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).4.问题情境:如图①,直线,点E,F分别在直线AB,CD上.猜想:若,,试猜想______°;探究:在图①中探究,,之间的数量关系,并证明你的结论;拓展:将图①变为图②,若,,求的度数.5.如图:(1) 如图1,,,,直接写出的度数.(2) 如图2,,点为直线,间的一点,平分,平分,写出与之间的关系并说明理由.(3) 如图3,与相交于点,点为内一点,平分,平分,若,,直接写出的度数.6.(1)已知:如图(a),直线.求证:;(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?7.如图,,点E在直线AB,CD内部,且.(1)如图1,连接AC,若AE平分,求证:平分;(2)如图2,点M在线段AE上,①若,当直角顶点E移动时,与是否存在确定的数量关系?并说明理由;②若(为正整数),当直角顶点E移动时,与是否存在确定的数量关系?并说明理由.8.已知直线l1//l2, A是l1上的一点,B是l2上的一点,直线l3和直线l1,l2交于C和D,直线CD上有一点P.(1)如果P点在C,D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C,D两点的外侧运动时(P点与C,D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?(请直接写出答案,不需要证明)9.(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.10.如图1,已知AB∥CD,∠B=30°,∠D=120°;若∠E=60°,则∠F= ;请探索∠E与∠F之间满足的数量关系?说明理由;如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.11.如图1,AB//CD,E是AB,CD之间的一点.判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;如图2,若∠BAE,∠CDE的角平分线交于点F,直接写出∠AFD与∠AED之间的数量关系;将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.12.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)13.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.14.如图1,点、分别在直线、上,,.(1)求证:;(提示:可延长交于点进行证明)(2)如图2,平分,平分,若,求与之间的数量关系;(3)在(2)的条件下,如图3,平分,点在射线上,,若,直接写出的度数.15.已知ABCD,∠ABE的角分线与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系.16.已知直线AM、CN和点B在同一平面内,且AM∥CN,AB⊥BC.(1)如图1,求∠A和∠C之间的数量关系;(2)如图2,若BD⊥AM,垂足为D,求证:∠ABD=∠C;(3)如图3,已知点D、E、F都在直线AM上,且∠ABD=∠NCB,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=3∠DBE,请直接写出∠EBC的度数.17.如图1,点在直线上,点在直线上,点在,之间,且满足.(1)证明:;(2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由;(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______.18.如图1,直线ABCD,点P在两平行线之间,点E在AB上,点F在CD上,连接PE,PF. (1)若∠PEB=60°,∠PFD=50°,请求出∠EPF.(请写出必要的步骤,并说明理由)(2)如图2,若点P,Q在直线AB与CD之间时,∠1=30°,∠2=40°,∠3=70°,请求出∠4= .(不需说明理由,请直接写出答案)(3)如图3,在图1的基础上,作P1E平分∠PEB,P1F平分∠PFD,若设∠PEB=x°,∠PFD=y°,则∠P1= (用含x,y的式子表示).若P2E平分∠P1EB,P2F平分∠P1FD,可得∠P2;P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3…,依次平分下去,则∠Pn= .(用含x,y的式子表示)19.已知,点为平面内一点,于.(1)如图1,点在两条平行线外,则与之间的数量关系为______;(2)点在两条平行线之间,过点作于点.①如图2,说明成立的理由;②如图3,平分交于点平分交于点.若,求的度数.20.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.21.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.22.如图1,//,点、分别在、上,点在直线、之间,且.(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值.23.已知,定点,分别在直线,上,在平行线,之间有一动点.(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,①若,则__________°.②猜想与的数量关系.(直接写出结论)24.如图1,由线段组成的图形像英文字母,称为“形”.(1)如图1,形中,若,则______;(2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由;(3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系.参考答案1.(1)证明见详解 (2);理由见详解【分析】(1)过点作,由,可知.由此可知:,,故;(2)由(1)可知.再由,∠AGM=∠HGQ,可知 :,利用三角形内角和是180°,可得.(1)解:如图:过点作,∴,∴,,∵,∴.(2)解:,理由如下:如图:过点作,由(1)知,∵平分,∴,∵∠AGM=∠HGQ,∴,∵,∴.【点拨】本题考查了利用平行线的性质求角之间的数量关系,正确的作出辅助线是解决本题的关键,同时这也是比较常见的几何模型“猪蹄模型”的应用.2.(1)见分析 (2)①;②结论:【分析】(1)利用平行线的性质解决问题即可;(2)①利用基本结论求解即可;②利用基本结论,,求解即可.解:(1)证明:如图,过作,,,,,平分,平分,,,,在中,,,;(2)解:①如图2中,由题意,,平分,平分,,,故答案为:;②结论:.理由:如图3中,由题意,,,平分,平分,,,,故答案为:.【点拨】本题考查平行线的性质和判定,角平分线的性质,垂直的定义,解题的关键是熟练掌握相关的性质.3.(1)证明见详解 (2)①;证明见详解;②;证明见详解【分析】(1)如图4过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出;(2)①如图5过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出;②如图6过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出.(1)解:如图4所示:过点作,∵ ∴ ∴,,∵,∴;(2)解:①如图5过点作,∵∴∴,,∵,∴;②如图6过点作,∵∴∴,,∵,∴.【点拨】本题利用“猪蹄模型”及其变式考查了利用平行线的性质求角之间的数量关系,准确的作出辅助线和找到对应的内错角是解决本题的关键.4.(1) (2);证明见详解 (3)【分析】(1)过点作,利用平行的性质就可以求角度,解决此问;(2)利用平行线的性质求位置角的数量关系,就可以解决此问;(3)分别过点、点作、,然后利用平行线的性质求位置角的数量关系即可.(1)解:如图过点作,∵,∴.∴,.∵,,∴ ∴.∵,∴∠P=80°.故答案为:;(2)解:,理由如下:如图过点作,∵,∴.∴,.∴∵,.(3)如图分别过点、点作、∵,∴.∴,,.∴ ∵,,, ∴∴ 故答案为:.【点拨】本题考查了平行线的性质定理,准确的作出辅助线和正确的计算是解决本题的关键.5.(1)∠BED=66°;(2)∠BED=2∠F,见分析;(3)∠BED的度数为130°.【分析】(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∠ABE=∠1=45°,∠CDE=∠2=21°,据此推得∠BED=∠1+∠2=66°;(2)首先作EG∥AB,延长DE交BF于点H,利用三角形的外角性质以及角平分线的定义即可得到∠BED=2∠F;(3)延长DF交AB于点H,延长GE到I,利用三角形的外角性质以及角平分线的定义即可得到∠BED的度数为130°.解:(1)如图,作EF∥AB,,∵直线AB∥CD,∴EF∥CD,∴∠ABE=∠1=45°,∠CDE=∠2=21°,∴∠BED=∠1+∠2=66°;(2)解:∠BED=2∠F,理由是:过点E作EG∥AB,延长DE交BF于点H,∵AB∥CD,∴AB∥CD∥EG,∴∠5=∠1+∠2,∠6=∠3+∠4,又∵BF平分∠ABE,DF平分∠CDE,∴∠2=∠1,∠3=∠4,则∠5=2∠2,∠6=2∠3,∴∠BED=2(∠2+∠3) ,又∠F+∠3=∠BHD,∠BHD+∠2=∠BED,∴∠3+∠2+∠F=∠BED,综上∠BED=∠F+12∠BED,即∠BED=2∠F;(3)解:延长DF交AB于点H,延长GE到I,∵∠BGD=60°,∴∠3=∠1+∠BGD=∠1+60°,∠BFD=∠2+∠3=∠2+∠1+60°=95°,∴∠2+∠1=35°,即2(∠2+∠1) =70°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠2,∠CDE=2∠1,∴∠BEI=∠ABE +∠BGE=2∠2+∠BGE,∠DEI=∠CDE+∠DGE=2∠1+∠DGE,∴∠BED=∠BEI+∠DEI=2(∠2+∠1)+( ∠BGE+∠DGE)=70°+60°=130°,∴∠BED的度数为130°.【点拨】本题考查了平行线的判定和性质,三角形的外角性质等知识,掌握平行线的判定和性质,正确添加辅助线是解题关键.6.(1)见分析;(2)当点C在AB与ED之外时,,见分析【分析】(1)由题意首先过点C作CF∥AB,由直线AB∥ED,可得AB∥CF∥DE,然后由两直线平行,内错角相等,即可证得∠ABC+∠CDE=∠BCD;(2)根据题意首先由两直线平行,内错角相等,可得∠ABC=∠BFD,然后根据三角形外角的性质即可证得∠ABC-∠CDE=∠BCD.解:(1)证明:过点C 作CF∥AB,∵AB∥ED,∴AB∥ED∥CF,∴∠BCF=∠ABC,∠DCF=∠EDC,∴∠ABC+∠CDE=∠BCD;(2)结论:∠ABC-∠CDE=∠BCD,证明:如图:∵AB∥ED,∴∠ABC=∠BFD,在△DFC中,∠BFD=∠BCD+∠CDE,∴∠ABC=∠BCD+∠CDE,∴∠ABC-∠CDE=∠BCD.若点C在直线AB与DE之间,猜想,∵AB∥ED∥CF,∴∴.【点拨】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质是解答本题的关键,注意掌握辅助线的作法.7.(1)见分析;(2)①∠BAE+∠MCD=90°,理由见分析;②∠BAE+∠MCD=90°,理由见分析.【分析】(1)根据平行的性质可得∠BAC+∠DCA=180°,再根据可得∠EAC+∠ECA=90°,根据AE平分∠BAC可得∠BAE=∠EAC,等量代换可得∠ECD+∠EAC=90°,继而求得∠DCE=∠ECA;(2)①过E作EF∥AB,先利用平行线的传递性得出EF∥AB∥CD,再利用平行线的性质及已知条件可推得答案;②过E作EF∥AB,先利用平行线的传递性得出EF∥AB∥CD,再利用平行线的性质及已知条件可推得答案.(1)解:因为,所以∠BAC+∠DCA=180°,因为,所以∠EAC+∠ECA=90°,因为AE平分∠BAC,所以∠BAE=∠EAC,所以∠BAE+∠DCE=90°,所以∠EAC+∠DCE=90°,所以∠DCE=∠ECA,所以CE平分∠ACD;(2)①∠BAE与∠MCD存在确定的数量关系:∠BAE+∠MCD=90°,理由如下: 过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD, ∴∠BAE+∠MCD=90°;②∠BAE与∠MCD存在确定的数量关系:∠BAE+∠MCD=90°,理由如下: 过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD, ∴∠BAE+∠MCD=90°.【点拨】本题主要考查平行线的性质和角平分线的定义,解决本题的关键是要添加辅助线利用平行性质.8.(1);(2)当点在直线上方时,;当点在直线下方时,.【分析】(1)过点作,由“平行于同一条直线的两直线平行”可得出,再由“两直线平行,内错角相等”得出、,再根据角与角的关系即可得出结论;(2)按点的两种情况分类讨论:①当点在直线上方时;②当点在直线下方时,同理(1)可得、,再根据角与角的关系即可得出结论.解:(1).过点作,如图1所示.,,,,,,.(2)结论:当点在直线上方时,;当点在直线下方时,.①当点在直线上方时,如图2所示.过点作.,,,,,,.②当点在直线下方时,如图3所示.过点作.,,,,,,.【点拨】本题考查了平行线的性质以及角的计算,解题的关键是根据“两直线平行,内错角相等”找到相等的角.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.9.(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.【分析】(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.解:(1)过E作EMAB,∵ABCD,∴CDEMAB,∴∠ABE=∠BEM,∠DCE=∠CEM,∵CF平分∠DCE,∴∠DCE=2∠DCF,∵∠DCF=30°,∴∠DCE=60°,∴∠CEM=60°,又∵∠CEB=20°,∴∠BEM=∠CEM﹣∠CEB=40°,∴∠ABE=40°;(2)过E作EMAB,过F作FNAB,∵∠EBF=2∠ABF,∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,∵CF平分∠DCE,∴设∠DCF=∠ECF=y,则∠DCE=2y,∵ABCD,∴EMABCD,∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,同理∠CFB=y﹣x,∵2∠CFB+(180°﹣∠CEB)=190°,∴2(y﹣x)+180°﹣(2y﹣3x)=190°, ∴x=10°,∴∠ABE=3x=30°;(3)过P作PLAB,∵GM平分∠DGP,∴设∠DGM=∠PGM=y,则∠DGP=2y,∵PQ平分∠BPG,∴设∠BPQ=∠GPQ=x,则∠BPG=2x,∵PQGN,∴∠PGN=∠GPQ=x,∵ABCD,∴PLABCD, ∴∠GPL=∠DGP=2y,∠BPL=∠ABP=30°,∵∠BPL=∠GPL﹣∠BPG,∴30°=2y﹣2x,∴y﹣x=15°,∵∠MGN=∠PGM﹣∠PGN=y﹣x,∴∠MGN=15°.【点拨】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.10.(1) (2),理由见分析 (3)【分析】(1)如图1,分别过点,作,,根据平行线的性质得到,,,代入数据即可得到结论;(2)如图1,根据平行线的性质得到,,由,,得到,根据平行线的性质得到,于是得到结论;(3)如图2,过点作,设,则,根据角平分线的定义得到,,根据平行线的性质得到,,于是得到结论.(1)解:如图1,分别过点,作,,,,,又,,,,又,,,,;故答案为:;(2)解:如图1,分别过点,作,,,,,又,,,,又,,,,,;(3)解:如图2,过点作,由(2)知,,设,则,平分,平分,,,,,,,.【点拨】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.11.(1);(2);(3)【分析】(1)作EF∥AB,如图1,则EF∥CD,利用平行线的性质得∠1=∠EAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED(2)如图2,由(1)的结论得∠AFD=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而计算出∠BAE的度数.解:(1)∠BAE+∠CDE=∠AED理由如下:作EF∥AB,如图1∵AB∥CD∴EF∥CD∴∠1=∠BAE,∠2=∠CDE∴∠BAE+∠CDE=∠AED(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF∵∠BAE、∠CDE的两条平分线交于点F∴∠BAF=∠BAE,∠CDF=∠CDE∴∠AFE=(∠BAE+∠CDE)∵∠BAE+∠CDE=∠AED∴∠AFD=∠AED(3)由(1)的结论得∠AGD=∠BAF+∠CDG而射线DC沿DE翻折交AF于点G∴∠CDG=4∠CDF∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED-∠BAE)=2∠AED-∠BAE∵90°-∠AGD=180°-2∠AED∴90°-2∠AED+∠BAE=180°-2∠AED∴∠BAE=60°【点拨】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12.(1)见分析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.解:(1)如图1,过点作,则有,,,,;(2)①如图2,过点作,有.,...即,平分,平分,,,.答:的度数为;②如图3,过点作,有.,,...即,平分,平分,,,.答:的度数为.【点拨】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.13.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点拨】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.14.(1)见分析;(2),见分析;(3)或.【分析】(1)根据平行线的判定与性质求证即可;(2)根据三角形的内角和为180°和平角定义得到,结合平行线的性质得到,再根据角平分线的定义证得,结合已知即可得出结论;(3)分当在直线下方和当在直线上方两种情况,根据平行线性质、三角形外角性质、角平分线定义求解即可.解:(1)如图1,延长交于点,∵,∴, ∴,∵,∴, ∴; (2)延长交于点,交于点,∵,,∴,∵,∴,∴, ∵平分,平分,∴,,∴,∵,,∴; (3)当在直线下方时,如图,设射线交于,∵,∴,∵平分,∴,∴,∵,,∴, ∵,,∴,即,解得:. 当在直线上方时,如图,同理可证得,则有,解得:.综上,故答案为或.【点拨】本题考查平行线的判定与性质、角平分线的定义、三角形的外角性质、三角形的内角和定理、平角定义、角度的运算,熟练掌握相关知识的联系与运用是解答的关键.15.(1)65°(2)(3)2n∠M+∠BED=360°【分析】(1)首先作EGAB,FHAB,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义可求∠M的度数;(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;(3)先由已知得到,,由(2)的方法可得到2n∠M+∠BED=360°.解:(1)如图1,作,,∵,∴,∴,,,,∴,∵,∴,∵的角平分线和的角平分线相交于F,∴,∴,∵、分别是和的角平分线,∴,,∴,∴;(2)如图2,∵,,∴,,∵与两个角的角平分线相交于点,∴,,∴,∵,∴,∴;(3)∵∠ABM=∠ABF,∠CDM=∠CDF,∴,,∵与两个角的角平分线相交于点,∴,,∴,∵,∴.【点拨】本题主要考查了平行线的性质和角平分线的计算,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.16.(1)∠A+∠C=90°;(2)见分析;(3)∠EBC=105°.【分析】(1)通过平行线性质和直角三角形内角关系求解.(2)画辅助平行线找角的联系.(3)利用(2)的结论,结合角平分线性质求解.解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵AM∥CN,∴CN∥BG,∴∠CBG=∠BCN,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,∵∠ABD=∠NCB,∴∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∵BG∥DM,∴∠DFB=∠GBF=β,∴∠AFC=∠BFC+∠DFB=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点拨】本题考查平行线性质,三角形内角和定理,角平分线的定义,画辅助线,找到角的关系是求解本题的关键.17.(1)见分析;(2)见分析;(3)n-1【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论;(3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值.解:(1)如图,连接,,,,,(2),理由:作,则 如图,设,则.,,,,.即.(3)作,则 如图,设,则.,,,,,故答案为.【点拨】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.18.(1)110°;(2)80°;(3)【分析】(1)过点P作PH∥AB∥CD,根据平行线的性质:两直线平行,内错角相等即可证得;(2)同理依据两直线平行,内错角相等即可证得∠1+∠4=∠2+∠3,求得∠4=80°;(3)利用(1)的结论和角平分线的性质即可写出结论.解:(1)如图1,过点P作PH∥AB∥CD,∴∠1=∠EPH,∠2=∠FPH,而∠EPF=∠EPH+∠FPH,∴∠EPF=∠1+∠2=110°;(2)过点P作,,,,,,,,,,∴∠1+∠4=∠2+∠3,∵∠1=30°,∠2=40°,∠3=70°,∴∠4=80°,故答案为:80°;(3)过点P作,平分,,同理,∴ ,同理,故答案为:,.【点拨】本题考查了平行线性质的应用,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会探究规律,利用规律解决问题.19.(1)∠A+∠C=90°;(2)①见分析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM, ∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点拨】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.20.(1)证明见分析;(2)证明见分析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点拨】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.21.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分别延长AC、CD交GH于点E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)设FB交MN于K,∵,则;∴∵,∴,,在△FAK中,,∴, ∴.经检验:是原方程的根,且符合题意.【点拨】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.22.(1) ;(2)的值为40°;(3).【分析】(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值.解:证明:过点O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即 ∵∠EOF=100°,∴∠;(2)解:过点M作MK∥AB,过点N作NH∥CD,∵EM平分∠BEO,FN平分∠CFO,设∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴ =x-y=40°,故的值为40°;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,∵AB∥CD,∴∵ ∴∵∴即∵FK在∠DFO内, ∴ ,∵∴∴即∴解得 .经检验,符合题意,故答案为:.【点拨】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.23.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;(2)当点在的右侧时,,,满足数量关系为:;(3)①若当点在的左侧时,;当点在的右侧时,可求得;②结合①可得,由,得出;可得,由,得出.解:(1)如图1,过点作,,,,,,;(2)如图2,当点在的右侧时,,,满足数量关系为:;过点作,,,,,,;(3)①如图3,若当点在的左侧时,,,,分别平分和,,,;如图4,当点在的右侧时,,,;故答案为:或30;②由①可知:,;,.综合以上可得与的数量关系为:或.【点拨】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.24.(1)50°;(2)∠A+∠C=30°+α,理由见分析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点拨】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)