年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    1.17 平行线几何模型(铅笔头模型)浙教版数学七年级下册基础知识讲与练

    立即下载
    加入资料篮
    1.17 平行线几何模型(铅笔头模型)浙教版数学七年级下册基础知识讲与练第1页
    1.17 平行线几何模型(铅笔头模型)浙教版数学七年级下册基础知识讲与练第2页
    1.17 平行线几何模型(铅笔头模型)浙教版数学七年级下册基础知识讲与练第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    1.17 平行线几何模型(铅笔头模型)浙教版数学七年级下册基础知识讲与练

    展开

    这是一份1.17 平行线几何模型(铅笔头模型)浙教版数学七年级下册基础知识讲与练,共9页。
    专题1.17 平行线几何模型(铅笔头模型)(知识讲解)几何模型1:铅笔头模型 图二几何模型2:多个铅笔头模型证明思路参考几何模型1【典型例题】类型一、平行线几何模型➽➼铅笔头模型➻➸求解✬✬证明 1.阅读下面材料,完成(1)~(3)题.数学课上,老师出示了这样—道题:如图1,已知点分别在上,.求的度数.同学们经过思考后,小明、小伟、小华三位同学用不同的方法添加辅助线,交流了自己的想法:小明:“如图2,通过作平行线,发现,由已知可以求出的度数.”小伟:“如图3这样作平行线,经过推理,得也能求出的度数.”小华:∵如图4,也能求出的度数.”请你根据小明同学所画的图形(图2),描述小明同学辅助线的做法,辅助线:______;(2) 请你根据以上同学所画的图形,直接写出的度数为_________°;老师:“这三位同学解法的共同点,都是过一点作平行线来解决问题,这个方法可以推广.”请大家参考这三位同学的方法,使用与他们类似的方法,解决下面的问题:如图,,点分别在上,平分若请探究与的数量关系((用含的式子表示),并验证你的结论.【答案】(1)过点作;(2)30;(3).【分析】(1)根据图中所画虚线的位置解答即可;(2)过点作,根据平行线的性质可得∠1=∠3,∠2=∠4,由EP⊥FP可得∠3+∠4=90°,即可得出∠1+∠2=90°,进而可得答案;(3)设,过点作,根据平行线的性质可得,,进而根据角的和差关系即可得答案.解:(1)由图中虚线可知PQ//AC,∴小明同学辅助线的做法为过点作,故答案为:过点作(2)如图2,过点作,∵AB//CD,∴PQ//AB//CD,∴∠1=∠3,∠2=∠4,∵EP⊥FP,∴∠EPF=∠3+∠4=90°,∴∠1+∠2=90°,∵∠1=60°,∴∠2=30°,故答案为:30(3)如图,设,过点作,∵,即.【点拨】本题考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;正确作出辅助线,熟练掌握平行线的性质是解题关键.举一反三:【变式】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC度数.思路点拨:小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可分别求出∠APE、∠CPE的度数,从而可求出∠APC的度数;小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∠APC的度数;小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∠APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∠APC的度数为   °;问题迁移:(1)如图5,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【答案】问题解决:110°;问题迁移:(1)∠CPD=∠α+∠β,理由见分析;(2)∠CPD=∠β﹣∠α,理由见分析【分析】小明的思路是:过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=110°.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)画出图形(分两种情况:①点P在BA的延长线上,②点P在AB的延长线上),根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.解:小明的思路:如图2,过P作PE∥AB, ∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°,故答案为:110;(1)∠CPD=∠α+∠β,理由如下:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β; (2)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图6,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α; 当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图7,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β. 【点拨】本题考查了三角形的内角和定理,平行线的性质,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.类型二、平行线几何模型➽➼多铅笔头模型➻➸求解✬✬证明 2.(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.    【答案】(1)①详见分析;②详见分析;(2)猜想:若平行线间有n个点,则所有角的和为(n+1)•180°,证明详见分析【分析】(1)①过点作BG∥AM,则AM∥CN∥BG,依据平行线的性质,即可得到∠ABG+∠BAM=180°,∠CBG+∠BCN=180°,即可得到结论;②过E作EP∥AM,过F作FQ∥CN,依据平行线的性质,即可得到∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°,即可得到结论;(2)过n个点作AM的平行线,则这些直线互相平行且与CN平行,即可得出所有角的和为(n+1)•180°.解:(1)①证明:如图1,过点作BG∥AM,则AM∥CN∥BG∴∠ABG+∠BAM=180°,∠CBG+∠BCN=180°∴∠ABG+∠BAM+∠CBG+∠BCN=360°∴∠MAB+∠ABC+∠BCN=360° ②如图,过E作EP∥AM,过F作FQ∥CN,∵AM∥CN,∴EP∥FQ,∴∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°∴∠MAE+∠AEF+∠EFC+∠FCN=180°×3=540°;(2)猜想:若平行线间有n个点,则所有角的和为(n+1)•180°.证明:如图2,过n个点作AM的平行线,则这些直线互相平行且与CN平行,∴结合(1)问得:所有角的和为(n+1)•180°. 【点拨】本题主要考查了平行线的性质,解决问题的关键是作平行线,利用两直线平行,同旁内角互补得出结论.举一反三:【变式】如图,已知AB∥CD.(1)如图1所示,∠1+∠2=   ;(2)如图2所示,∠1+∠2+∠3=   ;并写出求解过程.(3)如图3所示,∠1+∠2+∠3+∠4=   ;(4)如图4所示,试探究∠1+∠2+∠3+∠4+⋯+∠n=   .【答案】(1)180°;(2)360°;(3)540°;(4)(n-1)×180°【分析】(1)由两直线平行,同旁内角互补,可得答案;(2)过点E作AB的平行线,转化成两个图1,同理可得答案;(3)过点E,点F分别作AB的平行线,转化成3个图1,可得答案;(4)由(2)(3)类比可得答案.解:(1)如图1,∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补).故答案为:180°;(2)如图2,过点E作AB的平行线EF,∵AB∥CD,∴AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)如图3,过点E,点F分别作AB的平行线,类比(2)可知∠1+∠2+∠3+∠4=180°×3=540°,故答案为:540°;(4)如图4由(2)和(3)的解法可知∠1+∠2+∠3+∠4+…+∠n=(n-1)×180°,故答案为:(n-1)×180°.【点拨】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map