搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年天津市蓟州区八年级上学期期中数学试题及答案

    2022-2023学年天津市蓟州区八年级上学期期中数学试题及答案第1页
    2022-2023学年天津市蓟州区八年级上学期期中数学试题及答案第2页
    2022-2023学年天津市蓟州区八年级上学期期中数学试题及答案第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年天津市蓟州区八年级上学期期中数学试题及答案

    展开

    这是一份2022-2023学年天津市蓟州区八年级上学期期中数学试题及答案,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是( )
    A.B.C.D.
    2.下列长度的三条线段能组成三角形的是( )
    A.2,3,4B.3,6,11C.4,6,10D.5,8,14
    3.等腰三角形一个角的度数为50°,则顶角的度数为( )
    A.50°B.80°C.65°D.50°或80°
    4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )
    A.带①去B.带②去C.带③去D.带①②去
    5.如果n边形的内角和是它外角和的3倍,则n等于( )
    A.6B.7C.8D.9
    6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于( )
    A.110°B.100°C.80°D.70°
    7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
    A.44°B.60°C.67°D.77°
    8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是( )
    A.∠B=∠CB.∠BDA=∠CDAC.BD=CDD.AB=AC
    9.点P(1,﹣2)关于x轴对称的点的坐标为( )
    A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)
    10.下列语句中,正确的是( )
    A.等腰三角形底边上的中线就是底边上的垂直平分线
    B.等腰三角形的对称轴是底边上的高
    C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形
    D.等腰三角形的对称轴就是顶角平分线
    11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是( )
    A.40°B.35°C.55°D.20°
    12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为( )
    A.4cmB.6cmC.8cmD.10cm

    二、填空题:本大题共6小题,每小题3分,共18分
    13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有 对.
    14.等腰三角形的周长为20cm,一边长为6cm,则底边长为 cm.
    15.一个八边形的所有内角都相等,它的每一个外角等于 度.
    16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是 .
    17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是 .
    18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为 .

    三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分
    19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)
    (1)一个所有顶点均在格点上的等腰三角形;
    (2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;
    20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.
    21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.
    22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.
    23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.
    (1)求证:△CBE为等边三角形;
    (2)若AD=5,DE=7,求CD的长.
    24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.
    (1)求∠F的度数;
    (2)若CD=2cm,求DF的长.
    25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:
    (1)FC=AD;
    (2)AB=BC+AD.

    参考答案与试题解析
    一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求
    1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是( )
    A.B.C.D.
    【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.
    【解答】解:A、“大”是轴对称图形,故本选项不合题意;
    B、“美”是轴对称图形,故本选项不合题意;
    C、“中”是轴对称图形,故本选项不合题意;
    D、“国”是轴对称图形,故本选项符合题意.
    故选:D.
    【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    2.下列长度的三条线段能组成三角形的是( )
    A.2,3,4B.3,6,11C.4,6,10D.5,8,14
    【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
    【解答】解:A、2+3>4,能组成三角形;
    B、3+6<11,不能组成三角形;
    C、4+6=10,不能组成三角形;
    D、5+8<14,不能够组成三角形.
    故选:A.
    【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
    3.等腰三角形一个角的度数为50°,则顶角的度数为( )
    A.50°B.80°C.65°D.50°或80°
    【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.
    【解答】解:(1)当50°角为顶角,顶角度数为50°;
    (2)当50°为底角时,顶角=180°﹣2×50°=80°.
    故选:D.
    【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
    4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )
    A.带①去B.带②去C.带③去D.带①②去
    【分析】根据三角形全等的判定方法ASA,即可求解.
    【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;
    第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.
    故选:C.
    【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.
    5.如果n边形的内角和是它外角和的3倍,则n等于( )
    A.6B.7C.8D.9
    【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.
    【解答】解:由题意得:180(n﹣2)=360×3,
    解得:n=8,
    故选:C.
    【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
    6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于( )
    A.110°B.100°C.80°D.70°
    【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.
    【解答】解:∵AC⊥BC于C,
    ∴△ABC是直角三角形,
    ∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,
    ∴∠ABC=∠1=70°,
    ∵AB∥DF,
    ∴∠1+∠CEF=180°,
    即∠CEF=180°﹣∠1=180°﹣70°=110°.
    故选:A.
    【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.
    7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
    A.44°B.60°C.67°D.77°
    【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.
    【解答】解:△ABC中,∠ACB=90°,∠A=22°,
    ∴∠B=90°﹣∠A=68°,
    由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,
    ∴∠ADE=∠CED﹣∠A=46°,
    ∴∠BDC==67°.
    故选:C.
    【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
    8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是( )
    A.∠B=∠CB.∠BDA=∠CDAC.BD=CDD.AB=AC
    【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.
    【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;
    B、由,可得到△ABD≌△ACD,所以B选项不正确;
    C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.
    D、由,可得到△ABD≌△ACD,所以D选项不正确;
    故选:C.
    【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.
    9.点P(1,﹣2)关于x轴对称的点的坐标为( )
    A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)
    【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.
    【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,
    ∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),
    故选:A.
    【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.
    10.下列语句中,正确的是( )
    A.等腰三角形底边上的中线就是底边上的垂直平分线
    B.等腰三角形的对称轴是底边上的高
    C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形
    D.等腰三角形的对称轴就是顶角平分线
    【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.
    【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;
    B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;
    C、线段是轴对称图形,对称轴为垂直平分线,故C正确;
    D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.
    故选:C.
    【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.
    11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是( )
    A.40°B.35°C.55°D.20°
    【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.
    【解答】解:∵AA′∥BC,
    ∴∠BAA′=∠ABC=70°,
    ∵△ABC≌△A′BC′,
    ∴BA=BA′,∠A′BC′=∠ABC=70°,
    ∴∠BAA′=∠BA′A=70°,
    ∴∠A′BA=40°,
    ∴∠ABC′=30°,
    ∴∠CBC′=40°,
    故选:A.
    【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.
    12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为( )
    A.4cmB.6cmC.8cmD.10cm
    【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.
    【解答】解:∵AD平分∠CAB交BC于点D
    ∴∠CAD=∠EAD
    ∵DE⊥AB
    ∴∠AED=∠C=90
    ∵AD=AD
    ∴△ACD≌△AED.(AAS)
    ∴AC=AE,CD=DE
    ∵∠C=90°,AC=BC
    ∴∠B=45°
    ∴DE=BE
    ∵AC=BC,AB=6cm,
    ∴2BC2=AB2,即BC===3,
    ∴BE=AB﹣AE=AB﹣AC=6﹣3,
    ∴BC+BE=3+6﹣3=6cm,
    ∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).
    另法:证明三角形全等后,
    ∴AC=AE,CD=DE.
    ∵AC=BC,
    ∴BC=AE.
    ∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.
    故选:B.
    【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.
    注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

    二、填空题:本大题共6小题,每小题3分,共18分
    13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有 3 对.
    【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,
    △ABD≌△ACD.
    【解答】解:①△ABE≌△ACE
    ∵AB=AC,EB=EC,AE=AE
    ∴△ABE≌△ACE;
    ②△EBD≌△ECD
    ∵△ABE≌△ACE
    ∴∠ABE=∠ACE,∠AEB=∠AEC
    ∴∠EBD=∠ECD,∠BED=∠CED
    ∵EB=EC
    ∴△EBD≌△ECD;
    ③△ABD≌△ACD
    ∵△ABE≌△ACE,△EBD≌△ECD
    ∴∠BAD=∠CAD
    ∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED
    ∴∠ABC=∠ACB
    ∵AB=AC
    ∴△ABD≌△ACD
    ∴图中全等的三角形共有3对.
    【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.
    14.等腰三角形的周长为20cm,一边长为6cm,则底边长为 6或8 cm.
    【分析】分6cm是底边与腰长两种情况讨论求解.
    【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,
    此时三角形的三边分别为7cm、7cm、6cm,
    能组成三角形,
    ②6cm是腰长时,底边=20﹣6×2=8cm,
    此时三角形的三边分别为6cm、6cm、8cm,
    能组成三角形,
    综上所述,底边长为6或8cm.
    故答案为:6或8.
    【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.
    15.一个八边形的所有内角都相等,它的每一个外角等于 45 度.
    【分析】根据多边形的外角和为360°即可解决问题;
    【解答】解:∵一个八边形的所有内角都相等,
    ∴这个八边形的所有外角都相等,
    ∴这个八边形的所有外角==45°,
    故答案为45;
    【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.
    16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是 2(b﹣c) .
    【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.
    【解答】解:∵△ABC的三边长分别是a、b、c,
    ∴a+b>c,b﹣a<c,
    ∴a+b﹣c>0,b﹣a﹣c<0,
    ∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);
    故答案为:2(b﹣c)
    【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.
    17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是 10 .
    【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.
    【解答】解:∵DE是AB的垂直平分线,
    ∴AD=BD.
    ∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.
    故答案为:10.
    【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.
    18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为 4 .
    【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.
    【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,
    ∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,
    ∴MN=ME,
    ∴CE=CM+ME=CM+MN的最小值.
    ∵三角形ABC的面积为15,AB=10,
    ∴×10•CE=20,
    ∴CE=4.
    即CM+MN的最小值为4.
    故答案为4.
    【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目

    三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分
    19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)
    (1)一个所有顶点均在格点上的等腰三角形;
    (2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;
    【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.
    (2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.
    【解答】解:(1)如图所示:
    如三角形的三边长分别为1、1、或2、2、2或3、3、3或
    、、2或、、2或、、2等
    (2)如图所示:
    如三角形的三边长分别为、、或2、、等.
    【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.
    20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.
    【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.
    【解答】证明:在△ABD与△CDB中,

    ∴△ABD≌△CDB,
    ∴∠ABD=∠CDA,
    ∴AB∥CD.
    【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.
    21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.
    【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.
    【解答】解:在△COD和△BOE中,

    ∴△COD≌△BOE,
    ∴∠D=∠B,
    ∵OC=OE,OD=OB,
    ∴DE=BC
    在△ADE和△ABC中,

    ∴△ADE≌△ABC.
    【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
    22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.
    【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;
    【解答】证明:∵AB=AC,AD为∠BAC的平分线
    ∴BD=CD,
    ∵DE⊥AB,DF⊥AC
    ∴DE=DF,
    在Rt△BDE和Rt△CDF中

    ∴Rt△BDE≌Rt△CDF,
    ∴BE=CF.
    【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.
    23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.
    (1)求证:△CBE为等边三角形;
    (2)若AD=5,DE=7,求CD的长.
    【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;
    (2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.
    【解答】(1)证明:∵CA=CB,CE=CA,
    ∴BC=CE,∠CAE=∠CEA,
    ∵CD平分∠ACB交AE于D,且∠CDE=60°,
    ∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,
    ∴∠DAC=∠CEA=15°,
    ∴∠ACE=150°,
    ∴∠BCE=60°,
    ∴△CBE为等边三角形;
    (2)解:在AE上截取EM=AD,连接CM.
    在△ACD和△ECM中,

    ∴△ACD≌△ECM(SAS),
    ∴CD=CM,
    ∵∠CDE=60°,
    ∴△MCD为等边三角形,
    ∴CD=DM=7﹣5=2.
    【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.
    24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.
    (1)求∠F的度数;
    (2)若CD=2cm,求DF的长.
    【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;
    (2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.
    【解答】解:(1)∵△ABC是等边三角形,
    ∴∠B=60°,
    ∵DE∥AB,
    ∴∠EDC=∠B=60°,
    ∵EF⊥DE,
    ∴∠DEF=90°,
    ∴∠F=90°﹣∠EDC=30°;
    (2)∵∠ACB=60°,∠EDC=60°,
    ∴△EDC是等边三角形.
    ∴ED=DC=2,
    ∵∠DEF=90°,∠F=30°,
    ∴DF=2DE=4.
    【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.
    25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:
    (1)FC=AD;
    (2)AB=BC+AD.
    【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.
    (2)根据线段垂直平分线的性质判断出AB=BF即可.
    【解答】证明:(1)∵AD∥BC(已知),
    ∴∠ADC=∠ECF(两直线平行,内错角相等),
    ∵E是CD的中点(已知),
    ∴DE=EC(中点的定义).
    ∵在△ADE与△FCE中,

    ∴△ADE≌△FCE(ASA),
    ∴FC=AD(全等三角形的性质).
    (2)∵△ADE≌△FCE,
    ∴AE=EF,AD=CF(全等三角形的对应边相等),
    ∴BE是线段AF的垂直平分线,
    ∴AB=BF=BC+CF,
    ∵AD=CF(已证),
    ∴AB=BC+AD(等量代换).
    【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.

    相关试卷

    天津市蓟州区2023-2024学年七年级上学期11月期中数学试题:

    这是一份天津市蓟州区2023-2024学年七年级上学期11月期中数学试题,共4页。

    天津市蓟州区2023-2024学年七年级上学期11月期中数学试题:

    这是一份天津市蓟州区2023-2024学年七年级上学期11月期中数学试题,共4页。

    天津市蓟州区2022-2023学年七下数学期末学业质量监测模拟试题含答案:

    这是一份天津市蓟州区2022-2023学年七下数学期末学业质量监测模拟试题含答案,共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map