专题3.3 乘法公式-重难点题型(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版)
展开【知识点1 乘法公式】
平方差公式:(a+b)(a-b)=a2-b2。两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫做平方差公式。
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。这两个公式叫做完全平方公式。
【题型1 乘法公式的基本运算】
【例1】下列运算正确的是( )
A.(x+y)(﹣y+x)=x2﹣y2B.(﹣x+y)2=﹣x2+2xy+y2
C.(﹣x﹣y)2=﹣x2﹣2xy﹣y2D.(x+y)(y﹣x)=x2﹣y2
【变式1-1】下列关系式中,正确的是( )
A.(a﹣b)2=a2﹣b2B.(a+b)(﹣a﹣b)=a2﹣b2
C.(a+b)2=a2+b2D.(﹣a﹣b)2=a2+2ab+b2
【变式1-2】下列乘法运算中,不能用平方差公式计算的是( )
A.(m+1)(﹣1+m)B.(2a+3b﹣5c)(2a﹣3b﹣5c)
C.2021×2019D.(x﹣3y)(3y﹣x)
【变式1-3】下列各式,能用平方差公式计算的是( )
A.(2a+b)(2b﹣a)B.(﹣a﹣2b)(﹣a+2b)
C.(2a﹣3b)(﹣2a+3b)D.(13a+1)(-13a-1)
【题型2 完全平方公式(求系数的值)】
【例2】若多项式4x2﹣mx+9是完全平方式,则m的值是( )
A.6B.12C.±12D.±6
【变式2-1】如果x2+8x+m2是一个完全平方式,那么m的值是( )
A.4B.16C.±4D.±16
【变式2-2】已知:(x﹣my)2=x2+kxy+4y2(m、k为常数),则常数k的值为 .
【变式2-3】若x2﹣2(m﹣1)x+4是一个完全平方式,则m= .
【题型3 完全平方公式的几何背景】
【例3】有A,B两个正方形,按图甲所示将B放在A的内部,按图乙所示将A,B并列放置构造新的正方形.若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为( )
A.13B.19C.11D.21
【变式3-1】用4块完全相同的长方形拼成如图所示的正方形,用不同的方法计算图中阴影部分的面积,可得到一个关于a,b的等式为( )
A.4a(a+b)=4a2+4abB.(a+b)(a﹣b)=a2﹣b2
C.(a+b)2=a2+2ab+b2D.(a+b)2﹣(a﹣b)2=4ab
【变式3-2】现有四个大小相同的长方形,可拼成如图1和图2所示的图形,在拼图2时,中间留下了一个边长为4的小正方形,则每个小长方形的面积是( )
A.3B.6C.12D.18
【变式3-3】有两个正方形A,B.现将B放在A的内部得图甲,将A,B并列放置后,构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B,如图丙摆放,则阴影部分的面积为( )
A.28B.29C.30D.31
【题型4 平方差公式的几何背景】
【例4】如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是( )
A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2
C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)
【变式4-1】如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式( )
A.(x﹣1)2=x2﹣2x+1B.(x+1)(x﹣1)=x2﹣1
C.(x+1)2=x2+2x+1D.x(x﹣1)=x2﹣x
【变式4-2】如图(1),从边长为a的大正方形的四个角中挖去四个边长为b的小正方形后,将剩余的部分剪拼成一个长方形,如图(2),通过计算阴影部分的面积可以得到( )
A.(a﹣2b)2=a2﹣4ab+b2B.(a+2b)2=a2+4ab+b2
C.(a﹣2b)(a+2b)=a2﹣4b2D.(a+b)2=a2+2ab+b2
【变式4-3】如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式 .
【题型5 乘法公式(求代数式的值)】
【例5】若xy=﹣1,且x﹣y=3.
(1)求(x﹣2)(y+2)的值; (2)求x2﹣xy+y2的值.
【变式5-1】已知(2x+y)2=58,(2x﹣y)2=18,则xy= .
【变式5-2】已知a﹣b=9,ab=﹣14,则a2+b2的值为 .
【变式5-3】已知:a﹣b=6,a2+b2=20,求下列代数式的值:
(1)ab; (2)﹣a3b﹣2a2b2﹣ab3.
【题型6 乘法公式的综合运算】
【例6】实践与探索
如图1,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).
(1)上述操作能验证的等式是 ;(请选择正确的一个)
A.a2﹣b2=(a+b)(a﹣b) B.a2﹣2ab+b2=(a﹣b)2 C.a2+ab=a(a+b)
(2)请应用这个公式完成下列各题:
①已知4a2﹣b2=24,2a+b=6,则2a﹣b= .
②计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.
【变式6-1】【阅读理解】
我们知道:(a+b)2=a2+2ab+b2①,(a﹣b)2=a2﹣2ab+b2②,①﹣②得:(a+b)2﹣(a﹣b)2=4ab,
所以ab=(a+b)24-(a-b)24=(a+b2)2-(a-b2)2.
利用上面乘法公式的变形有时能进行简化计算.
例:51×49=(51+492)2-(51-492)2=502-12=2500﹣1=2499.
【发现运用】根据阅读解答问题
(1)填空:102×98= (102+982) 2﹣ (102-982) 2;
(2)请运用你发现的规律计算:19.2×20.8.
【变式6-2】我们将(a+b)2=a2+2ab+b2进行变形,如:a2+b2=(a+b)2﹣2ab,ab=(a+b)2-(a2+b2)2等.根据以上变形解决下列问题:
(1)已知a2+b2=8,(a+b)2=48,则ab= .
(2)已知,若x满足(25﹣x)(x﹣10)=﹣15,求(25﹣x)2+(x﹣10)2的值.
(3)如图,四边形ABED是梯形,DA⊥AB,EB⊥AB,AD=AC,BE=BC,连接CD,CE,若AC•BC=10,则图中阴影部分的面积为 .
【变式6-3】数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
(1)请用两种不同的方法求图2大正方形的面积:
方法1: ;方法2: ;
(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:a+b=5,(a﹣b)2=13,求ab的值;
②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
专题5.3 分式方程-重难点题型(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版): 这是一份专题5.3 分式方程-重难点题型(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版),共7页。
专题5.2 分式的运算-重难点题型(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版): 这是一份专题5.2 分式的运算-重难点题型(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版),共7页。
专题5.1 分式-重难点题型(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版): 这是一份专题5.1 分式-重难点题型(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版),共4页。