终身会员
搜索
    上传资料 赚现金
    2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题01 圆锥曲线中的弦长问题(教师版).docx
    • 学生
      专题01 圆锥曲线中的弦长问题(学生版).docx
    2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)01
    2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)02
    2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)03
    2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)01
    2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)02
    2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)03
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)

    展开
    这是一份2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析),文件包含专题01圆锥曲线中的弦长问题教师版docx、专题01圆锥曲线中的弦长问题学生版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    1.设椭圆长半轴长为,短半轴长为,半焦距为,则过焦点且垂直于长轴的弦长是( )
    A.B.C.D.
    2.已知椭圆,直线l过椭圆C的左焦点F且交椭圆于A,B两点,的中垂线交x轴于M点,则的取值范围为( )
    A.B.C.D.
    3.过椭圆9x2+25y2=225的右焦点且倾斜角为45°的弦长AB的长为( )
    A.5B.6C.D.7
    4.椭圆的左、右焦点分别是、,斜率为的直线l过左焦点且交于,两点,且的内切圆的周长是,若椭圆的离心率为,则线段的长度的取值范围是( )
    A.B.C.D.
    二、多选题
    5.已知抛物线的焦点为,过点的直线交抛物线于、两点,以线段为直径的圆交轴于、两点,则( )
    A.若抛物线上存在一点到焦点的距离等于,则抛物线的方程为
    B.若,则直线的斜率为
    C.若直线的斜率为,则
    D.设线段的中点为,若点到抛物线准线的距离为,则的最小值为
    三、解答题
    6.如图,是直线上一动点,过点且与垂直的直线交抛物线于,两点,点在,之间.
    (1)若过抛物线的焦点,求;
    (2)求的最小值.
    7.已知椭圆()长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线过点,且与椭圆相交于另一点.
    (1)求椭圆的方程;
    (2)若线段长为,求直线的倾斜角.
    8.已知直线经过抛物线的焦点,且与抛物线交于、两点.
    (1)若直线的倾斜角为,求线段的长;
    (2)若,求的长.
    9.已知圆上上任取一点,过点作轴的垂线段,垂足为,当在圆上运动时,线段中点为.
    (1)求点的轨迹方程;
    (2)若直线l的方程为y=x-1,与点的轨迹交于,两点,求弦的长.
    10.已知椭圆的右焦点为,左、右顶点为、,,.
    (1)求椭圆的标准方程;
    (2)求直线被椭圆截得的弦长.
    11.已知直线与圆相交.
    (1)求的取值范围;
    (2)若与相交所得弦长为,求直线与相交所得弦长.
    12.已知双曲线的标准方程为,分别为双曲线的左、右焦点.
    (1)若点在双曲线的右支上,且的面积为,求点的坐标;
    (2)若斜率为1且经过右焦点的直线与双曲线交于两点,求线段的长度.
    13.设抛物线,为的焦点,过的直线与交于两点.
    (1)设的斜率为,求的值;
    (2)求证:为定值.
    14.已知椭圆M:的一个焦点为,左右顶点分别为A,B.经过点的直线l与椭圆M交于C,D两点.
    (Ⅰ)求椭圆方程;
    (Ⅱ)当直线l的倾斜角为时,求线段CD的长;
    (Ⅲ)记△ABD与△ABC的面积分别为和,求的最大值.
    15.已知椭圆:的离心率为,点在椭圆上,直线过椭圆的右焦点与上顶点,动直线:与椭圆交于,两点,交于点.
    (1)求椭圆的方程;
    (2)已知为坐标原点,若点满足,求此时的长度.
    16.已知椭圆,为坐标原点,为椭圆上任意一点,,分别为椭圆的左、右焦点,且,其离心率为,过点的动直线与椭圆相交于,两点.
    (1)求椭圆的标准方程;
    (2)当时,求直线的方程
    17.如图,椭圆()的离心率为,过椭圆右焦点作两条互相垂直的弦与.当直线的斜率为0时,.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)求使取最小值时直线的方程.
    18.已知抛物线的焦点到准线的距离为2,且过点的直线被抛物线所截得的弦长为8.
    (1)求直线的方程;
    (2)当直线的斜率大于零时,求过点且与抛物线的准线相切的圆的方程.
    19.椭圆:,直线过点,交椭圆于、两点,且为的中点.
    (1)求直线的方程;
    (2)若,求的值.
    20.如图所示,已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点,设点的轨迹为曲线.
    (1)求曲线的方程;
    (2)过点的直线与曲线有两个不同的交点、,问是否存在实数,使得成立,若存在求出的值;若不存在,请说明理由.
    21.已知椭圆,直线过点与椭圆交于两点,为坐标原点.
    (1)设为的中点,当直线的斜率为时,求线段的长;
    (2)当△面积等于时,求直线的斜率.
    22.已知抛物线的焦点为,直线与抛物线相交于两点.
    (1)将表示为的函数;
    (2)若,求的周长.
    23.如图,过点的直线与抛物线交于两点.
    (1)若,求直线的方程;
    (2)记抛物线的准线为,设直线分别交于点,求的值.
    24.设椭圆E:(a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
    (1)求椭圆E的方程;
    (2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由.
    25.折纸又称“工艺折纸”,是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长. 某些折纸活动蕴含丰富的数学内容,例如:用圆形纸片,按如下步骤折纸(如下图),
    步骤1:设圆心是,在圆内不是圆心处取一点,标记为F;
    步骤2:把纸片对折,使圆周正好通过F;
    步骤3:把纸片展开,于是就留下一条折痕;
    步骤4:不停重复步骤2和3,能得到越来越多条的折痕.
    所有这些折痕围成的图形是一个椭圆.若取半径为4的圆形纸片,设定点到圆心的距离为2,按上述方法折纸.
    (1)建立适当的坐标系,求折痕围成椭圆的标准方程;
    (2)求经过,且与直线夹角为的直线被椭圆截得的弦长.
    四、填空题
    26.在平面直角坐标系中,过抛物线的焦点作斜率为1的直线,与抛物线交于,两点.若弦的长为6,则实数的值为__________.
    27.已知抛物线C : y2=2px(p>0),直线l :y = 2x+ b经过抛物线C的焦点,且与C相交于A、B 两点.若|AB| = 5,则p = ___.
    28.已知抛物线为过焦点的弦,过分别作抛物线的切线,两切线交于点,设,则下列结论正确的有________.
    ①若直线的斜率为-1,则弦;
    ②若直线的斜率为-1,则;
    ③点恒在平行于轴的直线上;
    ④若点是弦的中点,则.
    五、双空题
    29.已知抛物线的焦点为,直线与抛物线交于,两点,且,线段的垂直平分线过点,则抛物线的方程是______;若直线过点,则______.
    相关试卷

    2024年新高考数学培优专练02 圆锥曲线中的面积问题(原卷版+解析): 这是一份2024年新高考数学培优专练02 圆锥曲线中的面积问题(原卷版+解析),文件包含专题02圆锥曲线中的面积问题原卷版docx、专题02圆锥曲线中的面积问题教师版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。

    高中数学高考专题01 圆锥曲线中的弦长问题(原卷版): 这是一份高中数学高考专题01 圆锥曲线中的弦长问题(原卷版),共7页。试卷主要包含了单选题,多选题,解答题,填空题,双空题等内容,欢迎下载使用。

    高中数学高考专题01 圆锥曲线中的弦长问题(解析版): 这是一份高中数学高考专题01 圆锥曲线中的弦长问题(解析版),共41页。试卷主要包含了单选题,多选题,解答题,填空题,双空题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学培优专练01 圆锥曲线中的弦长问题(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map