终身会员
搜索
    上传资料 赚现金
    2024年中考数学必考考点总结题型专训专题31圆锥的计算篇(原卷版+解析)
    立即下载
    加入资料篮
    2024年中考数学必考考点总结题型专训专题31圆锥的计算篇(原卷版+解析)01
    2024年中考数学必考考点总结题型专训专题31圆锥的计算篇(原卷版+解析)02
    2024年中考数学必考考点总结题型专训专题31圆锥的计算篇(原卷版+解析)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学必考考点总结题型专训专题31圆锥的计算篇(原卷版+解析)

    展开
    这是一份2024年中考数学必考考点总结题型专训专题31圆锥的计算篇(原卷版+解析),共30页。试卷主要包含了 ,BC)的长为, ,BB′)的长是, ,AD)的长为, ,AB)的长是    等内容,欢迎下载使用。

    知识回顾
    圆的周长计算公式:
    弧长计算公式:
    (弧长为,圆心角度数为,圆的半径为)
    微专题
    1. (2023•丹东)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),BC)的长为( )
    第1题 第2题 第3题
    A.6πB.2πC.πD.π
    2. (2023•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时, EQ \* jc3 \* "Fnt:新宋体" \* hps18 \ \ad(\s \up 9(⌒),BB′)的长是( )
    A.πB.πC.πD.π
    3. (2023•河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AMB)所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AMB)的长是( )
    A.11πcmB.π cmC.7πcmD.π cm
    4. (2023•湖北)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AD)的长为( )
    第4题 第5题
    A.πB.πC.πD.2π
    5. (2023•甘肃)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧( EQ \* jc0 \* "Fnt:Calibri" \* hps18 \ \ad(\s \up 9(⌒),AB)),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路( EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AB))的长度为( )
    A.20πmB.30πmC.40πmD.50πm
    6. (2023•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是( )
    第6题 第7题 第8题
    A.mB.mC.mD.(+2)m
    7. (2023•枣庄)在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C=90°,∠ABC=30°,AC=2,将直角三角尺绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,以此方法做下去……则B点通过一次旋转至B′所经过的路径长为 .(结果保留π)
    8. (2023•沈阳)如图,边长为4的正方形ABCD内接于⊙O,则 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AB)的长是 (结果保留π).
    9. (2023•大连)如图,正方形ABCD的边长是,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是 (结果保留π).
    第9题 第10题 第11题
    10. (2023•青海)如图,从一个腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,则此扇形的弧长为 cm.
    11. (2023•广州)如图,在△ABC中,AB=AC,点O在边AC上,以O为圆心,4为半径的圆恰好过点C,且与边AB相切于点D,交BC于点E,则劣弧 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),DE)的长是 .(结果保留π)
    考点二:扇形面积的计算
    知识回顾
    圆的面积公式:

    扇形的定义:
    由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
    扇形的面积计算公式:
    或(其中为扇形的弧长)。
    求阴影部分的常用方法:
    ①直接用公式法;
    ②和差法;
    ③割补法.
    微专题
    12. (2023•资阳)如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AB)交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )
    第12题 第12题
    A.B.C.D.
    13. (2023•鞍山)如图,在矩形ABCD中,AB=2,BC=,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )
    A.B.C.D.
    14. (2023•兰州)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为( )
    A.4.25πm2B.3.25πm2C.3πm2D.2.25πm2
    15. (2023•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是( )
    A.9B.6C.3D.12
    16. (2023•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为( )
    第16题 第17题
    A.B.C.D.
    17. (2023•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )
    A.2πB.2C.2π﹣4D.2π﹣2
    18. (2023•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为( )
    A.30πcm2B.60πcm2C.120πcm2D.180πcm2
    19. (2023•贺州)如图,在等腰直角△OAB中,点E在OA上,以点O为圆心、OE为半径作圆弧交OB于点F,连接EF,已知阴影部分面积为π﹣2,则EF的长度为( )
    第19题 第20题
    A.B.2C.2D.3
    20. (2023•菏泽)如图,等腰Rt△ABC中,AB=AC=,以A为圆心,以AB为半径作 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),BDC);以BC为直径作 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),CAB).则图中阴影部分的面积是 .(结果保留π)
    21. (2023•贵港)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是 .
    22. (2023•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 .
    考点三:有理数之绝对值
    知识回顾
    圆锥的母线与高:
    连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高。
    圆锥的侧面展开图:
    圆锥的侧面展开图是一个扇形。扇形的半径等于原来圆锥的母线长,扇形的弧长等于原来圆锥的底面圆的周长。
    圆锥的侧面积计算:
    (是圆锥的母线长,是圆锥底面圆半径)
    圆锥的全面积:
    (是圆锥的母线长,是圆锥底面圆半径)
    圆锥的体积:

    圆锥的母线长,高,底面圆半径的关系:
    构成勾股定理。
    微专题
    23. (2023•东营)用一张半圆形铁皮,围成一个底面半径为4cm的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为( )
    A.4cmB.8cmC.12cmD.16cm
    24. (2023•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )
    A.96πcm2B.48πcm2C.33πcm2D.24πcm2
    25. (2023•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
    A.90°B.100°C.120°D.150°
    26. (2023•柳州)如图,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为( )
    第26题 第27题 第29题
    A.16πB.24πC.48πD.96π
    27. (2023•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是( )
    A.圆柱的底面积为4πm2
    B.圆柱的侧面积为10πm2
    C.圆锥的母线AB长为2.25m
    D.圆锥的侧面积为5πm2
    28. (2023•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )
    A.60πB.65πC.90πD.120π
    29. (2023•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为( )
    A.10cmB.20cmC.5cmD.24cm
    30. (2023•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为( )
    A.12πB.15πC.20πD.24π
    31. (2023•西藏)已知Rt△ABC的两直角边AC=8,BC=6,将Rt△ABC绕AC所在的直线旋转一周形成的立体图形的侧面积为 (结果保留π).
    (2023•郴州)如图,圆锥的母线长AB=12cm,底面圆的直径BC=10cm,则该圆锥的侧面积等
    于 cm2.(结果用含π的式子表示)
    33. (2023•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是 .
    专题31 圆锥的计算
    考点一:弧长的计算
    知识回顾
    圆的周长计算公式:

    弧长计算公式:
    (弧长为,圆心角度数为,圆的半径为)
    微专题
    1. (2023•丹东)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),BC)的长为( )
    A.6πB.2πC.πD.π
    【分析】先根据圆周角定理求出∠BOC=2∠A=60°,求出半径OB,再根据弧长公式求出答案即可.
    【解答】解:∵直径AB=6,
    ∴半径OB=3,
    ∵圆周角∠A=30°,
    ∴圆心角∠BOC=2∠A=60°,
    ∴的长是=π,
    故选:D.
    2. (2023•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时, EQ \* jc3 \* "Fnt:新宋体" \* hps18 \ \ad(\s \up 9(⌒),BB′)的长是( )
    A.πB.πC.πD.π
    【分析】证明α=30°,根据已知可算出AD的长度,根据弧长公式即可得出答案.
    【解答】解:∵CA=CB,CD⊥AB,
    ∴AD=DB=AB′.
    ∴∠AB′D=30°,
    ∴α=30°,
    ∵AC=4,
    ∴AD=AC•cs30°=4×=2,
    ∴,
    ∴的长度l==π.
    故选:B.
    3. (2023•河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AMB)所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AMB)的长是( )
    A.11πcmB.π cmC.7πcmD.π cm
    【分析】根据题意,先找到圆心O,然后根据PA,PB分别与所在圆相切于点A,B.∠P=40°可以得到∠AOB的度数,然后即可得到优弧AMB对应的圆心角,再根据弧长公式计算即可.
    【解答】解:OA⊥PA,OB⊥PB,OA,OB交于点O,如图,
    ∴∠OAP=∠OBP=90°,
    ∵∠P=40°,
    ∴∠AOB=140°,
    ∴优弧AMB对应的圆心角为360°﹣140°=220°,
    ∴优弧AMB的长是:=11π(cm),
    故选:A.
    4. (2023•湖北)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AD)的长为( )
    A.πB.πC.πD.2π
    【分析】连接CD,根据∠ACB=90°,∠B=30°可以得到∠A的度数,再根据AC=CD以及∠A的度数即可得到∠ACD的度数,最后根据弧长公式求解即可.
    【解答】解:连接CD,如图所示:

    ∵∠ACB=90°,∠B=30°,AB=8,
    ∴∠A=90°﹣30°=60°,AC==4,
    由题意得:AC=CD,
    ∴△ACD为等边三角形,
    ∴∠ACD=60°,
    ∴的长为:,
    故选:B.
    5. (2023•甘肃)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧( EQ \* jc0 \* "Fnt:Calibri" \* hps18 \ \ad(\s \up 9(⌒),AB)),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路( EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AB))的长度为( )
    A.20πmB.30πmC.40πmD.50πm
    【分析】根据题目中的数据和弧长公式,可以计算出这段弯路()的长度.
    【解答】解:∵半径OA=90m,圆心角∠AOB=80°,
    ∴这段弯路()的长度为:=40π(m),
    故选:C.
    6. (2023•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是( )
    A.mB.mC.mD.(+2)m
    【分析】先作出合适的辅助线,然后根据题意和图形,可以求得优弧所对的圆心角的度数和所在圆的半径,然后根据弧长公式计算即可.
    【解答】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,
    由题意可得,CD=2m,AD=2m,∠ADC=90°,
    ∴tan∠DCA===,AC==4(m),
    ∴∠ACD=60°,OA=OC=2m,
    ∴∠ACB=30°,
    ∴∠AOB=60°,
    ∴优弧ADCB所对的圆心角为300°,
    ∴改建后门洞的圆弧长是:=(m),
    故选:C.
    7. (2023•枣庄)在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C=90°,∠ABC=30°,AC=2,将直角三角尺绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,以此方法做下去……则B点通过一次旋转至B′所经过的路径长为 .(结果保留π)
    【分析】由含30度直角三角形的性质求出AB,根据弧长公式即可求出结论.
    【解答】解:∵∠C=90°,∠ABC=30°,AC=2,
    ∴AB=2AC=4,∠BAC=60°,
    由旋转的性质得,∠BAB′=∠BAC=60°,
    ∴B点通过一次旋转至B′所经过的路径长为=,
    故答案为:.
    8. (2023•沈阳)如图,边长为4的正方形ABCD内接于⊙O,则 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AB)的长是 (结果保留π).
    【分析】连接OA、OB,可证∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.
    【解答】解:连接OA、OB.
    ∵正方形ABCD内接于⊙O,
    ∴AB=BC=DC=AD,
    ∴===,
    ∴∠AOB=×360°=90°,
    在Rt△AOB中,由勾股定理得:2AO2=42,
    解得:AO=2,
    ∴的长==π,
    故答案为:π.
    9. (2023•大连)如图,正方形ABCD的边长是,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是 (结果保留π).
    【分析】先根据正方形的性质得到∠CAD=45°,AC=AB=×=2,然后利用弧长公式计算的长度.
    【解答】解:∵四边形ABCD为正方形,
    ∴∠CAD=45°,AC=AB=×=2,
    ∵对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,
    ∴的长度为=π.
    故答案为:π.
    10. (2023•青海)如图,从一个腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,则此扇形的弧长为 cm.
    【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长.
    【解答】解:过O作OE⊥AB于E,当扇形的半径为OE时扇形OCD最大,
    ∵OA=OB=60cm,∠AOB=120°,
    ∴∠A=∠B=30°,
    ∴OE=OA=30cm,
    ∴弧CD的长==20πcm,
    故答案为:20π.
    11. (2023•广州)如图,在△ABC中,AB=AC,点O在边AC上,以O为圆心,4为半径的圆恰好过点C,且与边AB相切于点D,交BC于点E,则劣弧 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),DE)的长是 .(结果保留π)
    【分析】连接OD,OE,根据等腰三角形的性质和三角形内角和定理可得∠A=∠COE,再根据切线的性质和平角的定义可得∠DOE=90°,然后利用弧长公式进行计算即可解答.
    【解答】解:连接OD,OE,
    ∵OC=OE,
    ∴∠OCE=∠OEC,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠A+∠ABC+∠ACB=∠COE+∠OCE+∠OEC,
    ∴∠A=∠COE,
    ∵圆O与边AB相切于点D,
    ∴∠ADO=90°,
    ∴∠A+∠AOD=90°,
    ∴∠COE+∠AOD=90°,
    ∴∠DOE=180°﹣(∠COE+∠AOD)=90°,
    ∴劣弧的长是=2π.
    故答案为:2π.
    考点二:扇形面积的计算
    知识回顾
    圆的面积公式:

    扇形的定义:
    由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
    扇形的面积计算公式:
    或(其中为扇形的弧长)。
    求阴影部分的常用方法:
    ①直接用公式法;
    ②和差法;
    ③割补法.
    微专题
    12. (2023•资阳)如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AB)交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )
    A.B.C.D.
    【分析】根据垂直平分线的性质和等边三角形的性质,可以得到∠COD=60°,即可求出扇形AOC的面积,再算出△AOC的面积,即可求出阴影部分面积.
    【解答】解:连接CO,直线l与AO交于点D,如图所示,
    ∵扇形AOB中,OA=2,
    ∴OC=OA=2,
    ∵点A与圆心O重合,
    ∴AD=OD=1,CD⊥AO,
    ∴OC=AC,
    ∴OA=OC=AC=2,
    ∴△OAC是等边三角形,
    ∴∠COD=60°,
    ∵CD⊥OA,
    ∴CD===,
    ∴阴影部分的面积为:=﹣,
    故选:B.
    13. (2023•鞍山)如图,在矩形ABCD中,AB=2,BC=,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )
    A.B.C.D.
    【分析】解直角三角形求出∠CBE=30°,推出∠ABE=60°,再利用扇形的面积公式求解.
    【解答】解:∵四边形ABCD是矩形,
    ∴∠ABC=∠C=90°,
    ∵BA=BE=2,BC=,
    ∴cs∠CBE==,
    ∴∠CBE=30°,
    ∴∠ABE=90°﹣30°=60°,
    ∴S扇形BAE==,
    故选:C.
    14. (2023•兰州)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为( )
    A.4.25πm2B.3.25πm2C.3πm2D.2.25πm2
    【分析】根据S阴=S扇形DOA﹣S扇形BOC,计算即可.
    【解答】解:S阴=S扇形DOA﹣S扇形BOC
    =﹣
    =2.25πm2.
    故选:D.
    15. (2023•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是( )
    A.9B.6C.3D.12
    【分析】设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,证明BE=CE,得到弓形BE的面积=弓形CE的面积,则.
    【解答】解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,
    ∵四边形ABCD是正方形,
    ∴∠OCE=45°,
    ∵OE=OC,
    ∴∠OEC=∠OCE=45°,
    ∴∠EOC=90°,
    ∴OE垂直平分BC,
    ∴BE=CE,
    ∴弓形BE的面积=弓形CE的面积,
    ∴,
    故选:A.
    16. (2023•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为( )
    A.B.C.D.
    【分析】图中阴影部分的面积等于扇形DOC的面积减去△DOC的面积.
    【解答】解:以OD为半径作弧DN,
    ∵四边形ABCD是正方形,
    ∴OB=OD=OC,∠DOC=90°,
    ∵∠EOB=∠FOD,
    ∴S扇形BOM=S扇形DON,
    ∴S阴影=S扇形DOC﹣S△DOC=﹣×1×1=﹣,
    故选:B.
    17. (2023•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )
    A.2πB.2C.2π﹣4D.2π﹣2
    【分析】连接OE,OC,BC,推出△EOC是等腰直角三角形,根据扇形面积减三角形面积计算即可.
    【解答】解:连接OE,OC,BC,
    由旋转知AC=AD,∠CAD=30°,
    ∴∠BOC=60°,∠ACE=(180°﹣30°)÷2=75°,
    ∴∠BCE=90°﹣∠ACE=15°,
    ∴∠BOE=2∠BCE=30°,
    ∴∠EOC=90°,
    即△EOC为等腰直角三角形,
    ∵CE=4,
    ∴OE=OC=2,
    ∴S阴影=S扇形OEC﹣S△OEC=﹣×=2π﹣4,
    故选:C.
    18. (2023•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为( )
    A.30πcm2B.60πcm2C.120πcm2D.180πcm2
    【分析】先根据题意可算出扇形的半径,再根据扇形面积公式即可得出答案.
    【解答】解:根据题意可得,
    设扇形的半径为rcm,
    则l=,
    即10π=,
    解得:r=12,
    ∴S===60π(cm2).
    故选:B.
    19. (2023•贺州)如图,在等腰直角△OAB中,点E在OA上,以点O为圆心、OE为半径作圆弧交OB于点F,连接EF,已知阴影部分面积为π﹣2,则EF的长度为( )
    A.B.2C.2D.3
    【分析】设OE=OF=r,利用扇形面积减去直角三角形OEF的面积等于阴影部分面积列方程,即可求出r,再用勾股定理即可求出EF长.
    【解答】解:设OE=OF=r,
    则,
    ∴r=±2(舍负),
    在Rt△OEF中,EF==2,
    故选:C.
    20. (2023•菏泽)如图,等腰Rt△ABC中,AB=AC=,以A为圆心,以AB为半径作 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),BDC);以BC为直径作 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),CAB).则图中阴影部分的面积是 .(结果保留π)
    【分析】如图,取BC的中点O,连接OA.根据S阴=S半圆﹣S△ABC+S扇形ACB﹣S△ACB,求解即可.
    【解答】解:如图,取BC的中点O,连接OA.
    ∵∠CAB=90°,AC=AB=,
    ∴BC=AB=2,
    ∴OA=OB=OC=1,
    ∴S阴=S半圆﹣S△ABC+S扇形ACB﹣S△ACB
    =•π×12﹣××+﹣××
    =π﹣2.
    故答案为:π﹣2.
    21. (2023•贵港)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是 5﹣π .
    【分析】过点D作DF⊥AB于点F,根据等腰直角三角形的性质求得DF,从而求得EB,最后由S阴影=S▱ABCD−S扇形ADE−S△EBC结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.
    【解答】解:过点D作DF⊥AB于点F,
    ∵AD=AB,∠BAD=45°,AB=3,
    ∴AD=×3=2,
    ∴DF=ADsin45°=2×=2,
    ∵AE=AD=2,
    ∴EB=AB−AE=,
    ∴S阴影=S▱ABCD−S扇形ADE−S△EBC
    =3×2﹣﹣××2
    =5﹣π,
    故答案为:5﹣π.
    22. (2023•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 .
    【分析】如图,设O′A′交于点T,连接OT.首先证明∠OTO′=30°,根据S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)求解即可.
    【解答】解:如图,设O′A′交于点T,连接OT.
    ∵OT=OB,OO′=O′B,
    ∴OT=2OO′,
    ∵∠OO′T=90°,
    ∴∠O′TO=30°,∠TOO′=60°,
    ∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)
    =﹣(﹣×1×)
    =+.
    故答案为:+.
    考点三:有理数之绝对值
    知识回顾
    圆锥的母线与高:
    连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高。
    圆锥的侧面展开图:
    圆锥的侧面展开图是一个扇形。扇形的半径等于原来圆锥的母线长,扇形的弧长等于原来圆锥的底面圆的周长。
    圆锥的侧面积计算:
    (是圆锥的母线长,是圆锥底面圆半径)
    圆锥的全面积:
    (是圆锥的母线长,是圆锥底面圆半径)
    圆锥的体积:

    圆锥的母线长,高,底面圆半径的关系:
    构成勾股定理。
    微专题
    23. (2023•东营)用一张半圆形铁皮,围成一个底面半径为4cm的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为( )
    A.4cmB.8cmC.12cmD.16cm
    【分析】求得半圆形铁皮的半径即可求得围成的圆锥的母线长.
    【解答】解:设半圆形铁皮的半径为rcm,
    根据题意得:πr=2π×4,
    解得:r=8,
    所以围成的圆锥的母线长为8cm,
    故选:B.
    24. (2023•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )
    A.96πcm2B.48πcm2C.33πcm2D.24πcm2
    【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式进行计算.
    【解答】解:∵底面圆的直径为6cm,
    ∴底面圆的半径为3cm,
    ∴圆锥的侧面积=×8×2π×3=24πcm2.
    故选:D.
    25. (2023•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
    A.90°B.100°C.120°D.150°
    【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.
    【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,
    设圆心角的度数是n度.
    则=2π,
    解得:n=120.
    故选:C.
    26. (2023•柳州)如图,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为( )
    A.16πB.24πC.48πD.96π
    【分析】先求出弧AA′的长,再根据扇形面积的计算公式进行计算即可.
    【解答】解:弧AA′的长,就是圆锥的底面周长,即2π×4=8π,
    所以扇形的面积为×8π×12=48π,
    即圆锥的侧面积为48π,
    故选:C.
    27. (2023•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是( )
    A.圆柱的底面积为4πm2
    B.圆柱的侧面积为10πm2
    C.圆锥的母线AB长为2.25m
    D.圆锥的侧面积为5πm2
    【分析】利用圆的面积公式对A选项进行判断;利用圆柱的侧面积=底面圆的周长×高可对B选项进行判断;根据勾股定理可对C选项进行判断;由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式可对D选项进行判断.
    【解答】解:∵底面圆半径DE=2m,
    ∴圆柱的底面积为4πm2,所以A选项不符合题意;
    ∵圆柱的高CD=2.5m,
    ∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;
    ∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,
    ∴圆锥的母线长AB==2.5(m),所以C选项符合题意;
    ∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.
    故选:C.
    28. (2023•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )
    A.60πB.65πC.90πD.120π
    【分析】先利用勾股定理求出圆锥侧面展开图扇形的半径,利用侧面展开图与底面圆的关系求出侧面展开图的弧长,再利用扇形面积公式即可求出圆锥侧面展开图的面积.
    【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,
    ∴圆锥侧面展开图的面积为:=65π.
    故选:B.
    29. (2023•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为( )
    A.10cmB.20cmC.5cmD.24cm
    【分析】根据弧长公式列方程求解即可.
    【解答】解:设母线的长为R,
    由题意得,πR=2π×12,
    解得R=24,
    ∴母线的长为24cm,
    故选:D.
    30. (2023•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为( )
    A.12πB.15πC.20πD.24π
    【分析】运用公式s=πlr(其中勾股定理求解得到的母线长l为5)求解.
    【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,
    ∴AB===5,
    由已知得,母线长l=5,半径r为4,
    ∴圆锥的侧面积是s=πlr=5×4×π=20π.
    故选:C.
    31. (2023•西藏)已知Rt△ABC的两直角边AC=8,BC=6,将Rt△ABC绕AC所在的直线旋转一周形成的立体图形的侧面积为 (结果保留π).
    【分析】利用勾股定理求得母线长,那么圆锥的侧面积=底面周长×母线长÷2.
    【解答】解:由勾股定理得AB=10,
    ∵BC=6,
    ∴圆锥的底面周长=12π,
    旋转体的侧面积=×12π×10=60π,
    故答案为:60π.
    (2023•郴州)如图,圆锥的母线长AB=12cm,底面圆的直径BC=10cm,则该圆锥的侧面积等
    于 cm2.(结果用含π的式子表示)
    【分析】由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则根据扇形的面积公式可计算出该圆锥的侧面积.
    【解答】解:根据题意该圆锥的侧面积=×10π×12=60π(cm2).
    故答案为:60π.
    33. (2023•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是 .
    【分析】根据题意可知,圆锥的底面圆的周长=扇形的弧长,即可列出相应的方程,然后求解即可.
    【解答】解:设这种圆锥的侧面展开图的圆心角度数是n°,
    2π×10=,
    解得n=120,
    即这种圆锥的侧面展开图的圆心角度数是120°,
    故答案为:120°.
    相关试卷

    2024年中考数学必考考点总结题型专训专题26矩形篇(原卷版+解析): 这是一份2024年中考数学必考考点总结题型专训专题26矩形篇(原卷版+解析),共19页。

    2024年中考数学必考考点总结题型专训专题25菱形篇(原卷版+解析): 这是一份2024年中考数学必考考点总结题型专训专题25菱形篇(原卷版+解析),共32页。

    2024年中考数学必考考点总结题型专训专题23多边形篇(原卷版+解析): 这是一份2024年中考数学必考考点总结题型专训专题23多边形篇(原卷版+解析),共13页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年中考数学必考考点总结题型专训专题31圆锥的计算篇(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map