年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题一 规范答题1 函数与导数--2024年高考数学复习二轮讲义

    立即下载
    加入资料篮
    专题一 规范答题1 函数与导数--2024年高考数学复习二轮讲义第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题一 规范答题1 函数与导数--2024年高考数学复习二轮讲义

    展开

    这是一份专题一 规范答题1 函数与导数--2024年高考数学复习二轮讲义,共3页。
    (1)讨论f(x)的单调性;[切入点:求导,讨论a的正负]
    (2)证明:当a>0时,f(x)>2ln a+eq \f(3,2).
    [方法一 关键点:作差法比较f(x)min与2ln a+eq \f(3,2)的大小]
    [方法二 关键点:利用不等式ex≥x+1把函数f(x)中的指数换成一次函数]
    (1)解 因为f(x)=a(ex+a)-x,定义域为R,
    所以f′(x)=aex-1,(1分)
    eq \x(\a\vs4\al\c1(当a≤0时,由于ex>0,则aex≤0,,故f′x=aex-10时,令f′(x)=aex-1=0,解得x=-ln a,
    eq \x(\a\vs4\al\c1(当x0,,则fx在-ln a,+∞上单调递增.))❷
    综上,当a≤0时,f(x)是减函数;(4分)
    当a>0时,f(x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增.(5分)
    (2)证明 方法一 由(1)得,当a>0时,
    eq \x(fxmin=f-ln a=ae-ln a+a+ln a=1+a2+ln a,)❸(7分)
    要证f(x)>2ln a+eq \f(3,2),即证1+a2+ln a>2ln a+eq \f(3,2),
    即证a2-eq \f(1,2)-ln a>0恒成立,(8分)
    eq \x(令g(a)=a2-\f(1,2)-ln a(a>0),)❹(9分)
    则g′(a)=2a-eq \f(1,a)=eq \f(2a2-1,a),
    令g′(a)0, ❺
    则g(a)>0恒成立,所以当a>0时,f(x)>2ln a+eq \f(3,2)恒成立,证毕.(12分)
    方法二 eq \x(令hx=ex-x-1,)❻
    则h′(x)=ex-1,由于y=ex是增函数,
    所以h′(x)=ex-1是增函数,
    又h′(0)=e0-1=0,
    所以当x0,
    所以h(x)在(-∞,0)上单调递减,
    在(0,+∞)上单调递增,
    故h(x)≥h(0)=0,
    则ex≥x+1,当且仅当x=0时,等号成立,(6分)
    eq \x(\a\vs4\al\c1(因为fx=aex+a-x=aex+a2-x,=ex+ln a+a2-x≥x+ln a+1+a2-x,))❼
    当且仅当x+ln a=0,
    即x=-ln a时,等号成立,
    所以要证f(x)>2ln a+eq \f(3,2),
    即证x+ln a+1+a2-x>2ln a+eq \f(3,2),
    即证a2-eq \f(1,2)-ln a>0,(8分)
    eq \x(\a\vs4\al\c1(令g(a)=a2-\f(1,2)-ln a(a>0),))❽(9分)
    则g′(a)=2a-eq \f(1,a)=eq \f(2a2-1,a),
    令g′(a)0, ❾
    则g(a)>0恒成立,
    所以当a>0时,f(x)>2ln a+eq \f(3,2)恒成立,证毕.(12分)
    ①②处判断f′(x)的符号
    ③处利用单调性求f(x)min
    ④处构造函数g(a)=f(x)min-eq \b\lc\(\rc\)(\a\vs4\al\c1(2ln a+\f(3,2)))
    ⑤处求g(a)min并判断其符号
    ⑥处构造函数证明ex≥x+1
    ⑦处通过不等式ex≥x+1放缩函数f(x)
    ⑧处构造函数g(a)
    ⑨处求g(a)min并判断其符号

    相关试卷

    2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题一 规范答题1 函数与导数29:

    这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题一 规范答题1 函数与导数29,共3页。

    备考2024届高考数学一轮复习大题规范练1函数与导数:

    这是一份备考2024届高考数学一轮复习大题规范练1函数与导数,共4页。

    新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题1 规范答题1 函数与导数(含解析):

    这是一份新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题1 规范答题1 函数与导数(含解析),共3页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map