|试卷下载
终身会员
搜索
    上传资料 赚现金
    题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)(原卷版).docx
    • 解析
      题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)(解析版).docx
    题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)01
    题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)02
    题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)03
    题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)01
    题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)02
    题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)03
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)

    展开
    这是一份题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型十一综合探究题类型二与动点有关的探究题专题训练原卷版docx、题型十一综合探究题类型二与动点有关的探究题专题训练解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    1.在数学兴趣小组活动中,小亮进行数学探究活动.
    (1)是边长为3的等边三角形,E是边上的一点,且,小亮以为边作等边三角形,如图1,求的长;
    (2)是边长为3的等边三角形,E是边上的一个动点,小亮以为边作等边三角形,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;
    (3)是边长为3的等边三角形,M是高上的一个动点,小亮以为边作等边三角形,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;
    (4)正方形的边长为3,E是边上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形,其中点F、G都在直线上,如图4,当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为______,点G所经过的路径长为______.
    【答案】(1)1;(2)3;(3);(4);
    【分析】
    (1)由、是等边三角形,,, ,可证即可;
    (2)连接,、是等边三角形,可证,可得,又点在处时,,点在A处时,点与重合.可得点运动的路径的长;
    (3)取中点,连接,由、是等边三角形,可证,可得.又点在处时,,点在处时,点与重合.可求点所经过的路径的长;
    (4)连接CG ,AC ,OB,由∠CGA=90°,点G在以AC中点为圆心,AC为直径的上运动,由四边形ABCD为正方形,BC为边长,设OC=x,由勾股定理即,可求,点G所经过的路径长为长=,点H所经过的路径长为的长.
    【详解】
    解:(1)∵、是等边三角形,
    ∴,,.
    ∴,
    ∴,
    ∴,
    ∴;
    (2)连接,
    ∵、是等边三角形,
    ∴,,.
    ∴,
    ∴,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    又点在处时,,点在A处时,点与重合.
    ∴点运动的路径的长;
    (3)取中点,连接,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵、是等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∴,,
    ∴,
    又点在处时,,点在处时,点与重合,
    ∴点所经过的路径的长;
    (4)连接CG ,AC ,OB,
    ∵∠CGA=90°,
    ∴点G在以AC中点为圆心,AC为直径的上运动,
    ∵四边形ABCD为正方形,BC为边长,
    ∴∠COB=90°,设OC=x,
    由勾股定理即,
    ∴,
    点G所经过的路径长为长=,
    点H在以BC中点为圆心,BC长为直径的弧上运动,
    点H所经过的路径长为的长度,
    ∵点G运动圆周的四分之一,
    ∴点H也运动圆周的四分一,
    点H所经过的路径长为的长=,
    故答案为;.
    【点睛
    本题考查等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式,掌握等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式是解题关键.
    2.(2021·浙江中考真题)已知在中,是的中点,是延长线上的一点,连结.
    (1)如图1,若,求的长.
    (2)过点作,交延长线于点,如图2所示.若,求证:.
    (3)如图3,若,是否存在实数,当时,?若存在,请直接写出的值;若不存在,请说明理由.
    【答案】(1);(2)见解析;(3)存在,
    【分析】
    (1)先解直角三角形ABC得出,从而得出是等边三角形,再解直角三角形ACP即可求出AC的长,进而得出BC的长;
    (2)连结,先利用AAS证出,得出AE=2PE,AC=DE,再得出是等边三角形,然后由SAS得出,得出AE=BC即可得出结论;
    (3)过点作,交延长线于点,连接BE,过C作CG⊥AB于G,过E作EN⊥AB于N,由(2)得AE=2AP,DE=AC,再证明,从而得出得出DE=BE,然后利用勾股定理即可得出m的值.
    【详解】
    (1)解 ,



    是等边三角形,
    是的中点,

    在中,,


    (2)证明:连结,







    又,

    是等边三角形,


    又,



    (3)存在这样的.
    过点作,交延长线于点,连接BE,过C作CG⊥AB于G,过E作EN⊥AB于N,则,

    由(2)得AE=2AP,DE=AC,
    ∴CG=EN,
    ∵,
    ∴AE=BC,
    ∵∠ANE=∠BGC=90°,

    ∴∠EAN=∠CBG
    ∵AE=BC,AB=BA,

    ∴AC=BE,
    ∴DE=BE,
    ∴∠EDB=∠EBD=45°,
    ∴∠DEB=90°,
    ∴,


    【点睛】
    本题属于三角形综合题,考查了解直角三角形,全等三角形的性质与判定,等边三角形和等腰三角形的性质、勾股定理,解题的关键是合理添加辅助线,有一定的难度.
    3.(2021·浙江中考真题)问题:如图,在中,,,,的平分线AE,BF分别与直线CD交于点E,F,求EF的长.
    答案:.
    探究:(1)把“问题”中的条件“”去掉,其余条件不变.
    ①当点E与点F重合时,求AB的长;
    ②当点E与点C重合时,求EF的长.
    (2)把“问题”中的条件“,”去掉,其余条件不变,当点C,D,E,F相邻两点间的距离相等时,求的值.
    【答案】(1)①10;②5;(2),,
    【分析】
    (1)①利用平行四边形的性质和角平分线的定义先分别求出,,即可完成求解;
    ②证明出即可完成求解;
    (2)本小题由于E、F点的位置不确定,故应先分情况讨论,再根据每种情况,利用 ,以及点 C,D,E,F相邻两点间的距离相等建立相等关系求解即可.
    【详解】
    (1)①如图1,四边形ABCD是平行四边形,


    平分,



    同理可得:.
    点E与点F重合,

    ②如图2,点E与点C重合,
    同理可证,
    ∴▱ABCD 是菱形,

    点F与点D重合,

    (2)情况1,如图3,
    可得,

    情况2,如图4,
    同理可得,,
    又,

    情况3,如图5,
    由上,同理可以得到,
    又,

    综上:的值可以是,,.
    【点睛】
    本题属于探究型应用题,综合考查了平行四边形的性质、角平分线的定义、菱形的判定与性质等内容,解决本题的关键是读懂题意,正确画出图形,建立相等关系求解等,本题综合性较强,要求学生有较强的分析能力,本题涉及到的思想方法有分类讨论和数形结合的思想等.
    4.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EFAB交PQ于F,连接BF.
    (1)求证:四边形BFEP为菱形;
    (2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
    ①当点Q与点C重合时(如图2),求菱形BFEP的边长;
    ②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
    【答案】(1)见解析;(2)①;②
    【分析】
    (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;
    (2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在RtCDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在RtAPE中,由勾股定理得出方程,解方程得出EP=cm即可;
    ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.
    【详解】
    (1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,
    ∴点B与点E关于PQ对称,
    ∴PB=PE,BF=EF,∠BPF=∠EPF,
    又∵EFAB,
    ∴∠BPF=∠EFP,
    ∴∠EPF=∠EFP,
    ∴EP=EF,
    ∴BP=BF=EF=EP,
    ∴四边形BFEP为菱形;
    (2)解:①∵四边形ABCD是矩形,
    ∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,
    ∵点B与点E关于PQ对称,
    ∴CE=BC=5cm,
    在RtCDE中,DE==4cm,
    ∴AE=AD﹣DE=5cm﹣4cm=1cm;
    在RtAPE中,AE=1,AP=3﹣PB=3﹣PE,
    ∴EP2=12+(3﹣EP)2,
    解得:EP=cm,
    ∴菱形BFEP的边长为cm;
    ②当点Q与点C重合时,如图2:
    点E离点A最近,由①知,此时AE=1cm;
    当点P与点A重合时,如图3所示:
    点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,
    ∴点E在边AD上移动的最大距离为2cm.
    【点睛】
    本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.
    5.(2021·山东中考真题)如图,已知正方形ABCD,点E是BC边上一点,将△ABE沿直线AE折叠,点B落在F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC
    (1)求证:AG=GH;
    (2)若AB=3,BE=1,求点D到直线BH的距离;
    (3)当点E在BC边上(端点除外)运动时,∠BHC的大小是否变化?为什么?
    【答案】(1)见解析;(2);(3)不变,理由见解析
    【分析】
    (1)根据折叠的性质得到AG⊥BF,结合角平分线的定义得到∠FAH=∠FAD,从而推出∠EAH=(∠BAF+∠FAD)=45°,可得AG=GH;
    (2)连接DH,DF,交AH于点N,易得等腰直角△DHF,推出DH的长即为点D到BH的距离,根据DH=FH,转化为求FH的长,结合(1)中条件,证明△ABG∽△AEB,得到,从而求出GF和GH,可得DH;
    (3)作正方形ABCD的外接圆,判断出点H在圆上,结合圆周角定理求出∠BHC即可.
    【详解】
    解:(1)∵△ABE沿直线AE折叠,点B落在点F处,
    ∴∠BAG=∠GAF=BAF,B、F关于AE对称,
    ∴AG⊥BF,
    ∴∠AGF=90°,
    ∵AH平分∠DAF,
    ∴∠FAH=∠FAD,
    ∴∠EAH=∠GAF+∠FAH
    =∠BAF+∠FAD
    =(∠BAF+∠FAD)
    =∠BAD,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∴∠EAH=∠BAD=45°,
    ∴∠GHA=45°,
    ∴GA=GH;
    (2)连接DH,DF,交AH于点N,
    由(1)可知:AF=AD,∠FAH=∠DAH,
    ∴AH⊥DF,FN=DN,
    ∴DH=HF,∠FNH=∠DNH=90°,
    又∵∠GHA=45°,
    ∴∠FHN=45°=∠NDH=∠DHN,
    ∴∠DHF=90°,
    ∴DH的长即为点D到直线BH的距离,
    由(1)知:在Rt△ABE中,,
    ∴,
    ∵∠BAE+∠AEB=∠BAE+∠ABG=90°,
    ∴∠AEB=∠ABG,
    ∴△ABG∽△AEB,
    ∴,
    ∴,

    由(1)知:GF=BG,AG=GH,
    ∴,,
    ∴DH=FH=GH-GF==,
    即点D到直线BH的长为;
    (3)作正方形ABCD的外接圆,对角线BD为圆的直径,
    ∵∠BHD=90°,
    ∴H在圆周上,
    ∴∠BHC=∠BDC,
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,BC=CD,
    ∴∠BDC=∠DBC=45°,
    ∴∠BHC=45°,
    ∴当点E在BC边上(除端点外)运动时,∠BHC的大小不变.
    【点睛】
    本题是四边形综合题,考查了折叠的性质,相似三角形的判定和性质,圆周角定理,等腰三角形的判定和性质,侧重对学生能力的考查:几何变换的能力,转化能力以及步骤书写能力,具有一定艺术性.
    6.(2021·湖南中考真题)如图,在中,点为斜边上一动点,将沿直线折叠,使得点的对应点为,连接,,,.
    (1)如图①,若,证明:.
    (2)如图②,若,,求的值.
    (3)如图③,若,是否存在点,使得.若存在,求此时的值;若不存在,请说明理由.
    【答案】(1)证明见解析;(2);(3)存在,的值为或.
    【分析】
    (1)先根据平行线的判定与性质可得,再根据折叠的性质可得,从而可得,然后根据平行线的判定可得,最后根据菱形的判定与性质即可得证;
    (2)设与的交点为点,过点作于点,设,从而可得,先证出,从而可得,设,根据线段的和差可得,代入可求出,从而可得,再在中,解直角三角形可得,由此可得,然后在中,根据余弦三角函数的定义即可得;
    (3)如图(见解析),设,从而可得,分①点在直线的左侧;②点在直线的右侧两种情况,再分别利用等边三角形的判定与性质、等腰三角形的性质求解即可得.
    【详解】
    (1)证明:,,


    由折叠的性质得:,


    四边形是平行四边形,
    又,
    平行四边形是菱形,

    (2)如图,设与的交点为点,过点作于点,

    是等腰三角形,,
    设,则,


    由折叠的性质得:,
    在和中,,


    设,则,

    解得,

    在中,,

    则;
    (3),

    设,则,
    由折叠的性质得:,

    由题意,分以下两种情况:
    ①如图,当点在直线的左侧时,过点作于点,
    (等腰三角形的三线合一),

    在中,,

    又,



    是等边三角形,


    ②如图,当点在直线的右侧时,过点作于点,
    同理可得:,

    点在上,
    由折叠的性质得:,
    在中,,


    综上,存在点,使得,此时的值为或.
    【点睛】
    本题考查了菱形的判定与性质、相似三角形的判定与性质、解直角三角形、折叠的性质、等边三角形的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.
    7.(2020•河北)如图1和图2,在△ABC中,AB=AC,BC=8,tanC=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.
    (1)当点P在BC上时,求点P与点A的最短距离;
    (2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;
    (3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);
    (4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.
    【分析】(1)如图1中,过点A作AH⊥BC于H.解直角三角形求出AH即可.
    (2)利用相似三角形的性质求解即可.
    (3)分两种情形:当0≤x≤3时,当3<x≤9时,分别画出图形求解即可.
    (4)求出CK的长度,以及CQ的最大值,利用路程与速度的关系求解即可.
    【解析】(1)如图1中,过点A作AH⊥BC于H.
    ∵AB=AC,AH⊥BC,
    ∴BH=CH=4,∠B=∠C,
    ∴tan∠B=tan∠C=AHBH=34,
    ∴AH=3,AB=AC=AH2+BH2=32+42=5.
    ∴当点P在BC上时,点P到A的最短距离为3.
    (2)如图1中,∵∠APQ=∠B,
    ∴PQ∥BC,
    ∴△APQ∽△ABC,
    ∵PQ将△ABC的面积分成上下4:5,
    ∴S△APQS△ABC=(APAB)2=49,
    ∴APAB=23,
    ∴AP=103,
    ∴PM=AP=AM=103-2=43.
    (3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.
    ∵PQ∥BC,
    ∴APAB=PQBC,∠AQP=∠C,
    ∴x+25=PQ8,
    ∴PQ=85(x+2),
    ∵sin∠AQP=sin∠C=35,
    ∴PJ=PQ•sin∠AQP=2425(x+2).
    当3<x≤9时,如图2中,过点P作PJ⊥AC于J.
    同法可得PJ=PC•sin∠C=35(11﹣x).
    (4)由题意点P的运动速度=936=14单位长度/秒.
    当3<x≤9时,设CQ=y.
    ∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,
    ∴∠BAP=∠CPQ,
    ∵∠B=∠C,
    ∴△ABP∽△PCQ,
    ∴ABCP=BPCQ,
    ∴511-x=x-3y,
    ∴y=-15(x﹣7)2+165,
    ∵-15<0,
    ∴x=7时,y有最大值,最大值=165,
    ∵AK=94,
    ∴CK=5-94=114<165
    当y=114时,114=-15(x﹣7)2+165,
    解得x=7±32,
    ∴点K被扫描到的总时长=(114+6﹣3)÷14=23秒.
    8.(2020•凉山州)如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
    (1)如图1,连接AQ、CP.求证:△ABQ≌△CAP;
    (2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;
    (3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
    【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP即可;
    (2)先判定△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;
    (3)先判定△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.
    【解析】(1)证明:如图1,∵△ABC是等边三角形
    ∴∠ABQ=∠CAP=60°,AB=CA,
    又∵点P、Q运动速度相同,
    ∴AP=BQ,
    在△ABQ与△CAP中,
    AB=CA∠ABQ=∠CPAAP=BQ,
    ∴△ABQ≌△CAP(SAS);
    (2)点P、Q在AB、BC边上运动的过程中,∠QMC不变.
    理由:∵△ABQ≌△CAP,
    ∴∠BAQ=∠ACP,
    ∵∠QMC是△ACM的外角,
    ∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC
    ∵∠BAC=60°,
    ∴∠QMC=60°;
    (3)如图2,点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变
    理由:同理可得,△ABQ≌△CAP,
    ∴∠BAQ=∠ACP,
    ∵∠QMC是△APM的外角,
    ∴∠QMC=∠BAQ+∠APM,
    ∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°,
    即若点P、Q在运动到终点后继续在射线AB、BC上运动,∠QMC的度数为120°.
    9.(2020•衡阳)如图1,平面直角坐标系xOy中,等腰△ABC的底边BC在x轴上,BC=8,顶点A在y的正半轴上,OA=2,一动点E从(3,0)出发,以每秒1个单位的速度沿CB向左运动,到达OB的中点停止.另一动点F从点C出发,以相同的速度沿CB向左运动,到达点O停止.已知点E、F同时出发,以EF为边作正方形EFGH,使正方形EFGH和△ABC在BC的同侧,设运动的时间为t秒(t≥0).
    (1)当点H落在AC边上时,求t的值;
    (2)设正方形EFGH与△ABC重叠面积为S,请问是否存在t值,使得S=9136?若存在,求出t值;若不存在,请说明理由;
    (3)如图2,取AC的中点D,连结OD,当点E、F开始运动时,点M从点O出发,以每秒25个单位的速度沿OD﹣DC﹣CD﹣DO运动,到达点O停止运动.请问在点E的整个运动过程中,点M可能在正方形EFGH内(含边界)吗?如果可能,求出点M在正方形EFGH内(含边界)的时长;若不可能,请说明理由.
    【分析】(1)利用平行线分线段成比例定理解决问题即可.
    (2)由题意,在E,F的运动过程中,开始正方形EFGH的边长为1,因为正方形EFGH与△ABC重叠面积为S,S=9136,推出此时点F与O重合,已经停止运动,如图1﹣2中,重叠部分是五边形OEKJG.构建方程求解即可.
    (3)分别求出点M第一次和第二次落在正方形内部(包括边界)的时长即可解决问题.
    【解析】(1)如图1﹣1中,
    由题意,OA=2,OB=OC=4,EF=EH=FG=HG=1,
    当点H落在AC上时,∵EH∥OA,
    ∴CECO=EHOA,
    ∴CE4=12,
    ∴CE=2,
    ∴点E的运动路程为1,
    ∴t=1时,点E落在AC上.
    (2)由题意,在E,F的运动过程中,开始正方形EFGH的边长为1,
    ∵正方形EFGH与△ABC重叠面积为S,S=9136,
    ∴此时点F与O重合,已经停止运动,如图1﹣2中,重叠部分是五边形OEKJG.
    由题意:(t﹣3)2-12•3t-132•(3t﹣13)=9136,
    整理得45t2﹣486t+1288=0,
    解得t=143或9215(舍弃),
    ∴满足条件的t的值为143.
    (3)如图3﹣1中,当点M第一次落在EH上时,4t+t=3,t=35
    当点M第一次落在FG上时,4t+t=4,t=45,
    ∴点M第一次落在正方形内部(包括边界)的时长=45-35=15(s),
    当点M第二次落在FG上时,4t﹣t=4,t=43,
    当点M第二次落在EH上时,4t﹣(t+1)=4,t=53,
    点M第二次落在正方形内部(包括边界)的时长=53-43=13,
    ∴点M落在正方形内部(包括边界)的总时长=15+13=815(s).
    10.(2020•青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).
    解答下列问题:
    (1)当t为何值时,点M在线段CQ的垂直平分线上?
    (2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;
    (3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;
    (4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.
    【分析】(1)由平行线分线段成比例可得CMBF=CEBE,可求CM的长,由线段垂直平分线的性质可得CM=MQ,即可求解;
    (2)利用锐角三角函数分别求出PH=65t,QN=6-45t,由矩形的性质可求解;
    (3)利用面积的和差关系可得S=S梯形GMFH﹣S△CMQ﹣S△HFQ,即可求解;
    (4)连接PF,延长AC交EF于K,由“SSS”可证△ABC≌△EBF,可得∠E=∠CAB,可证∠ABC=∠EKC=90°,由面积法可求CK的长,由角平分线的性质可求解.
    【解析】(1)∵AB∥CD,
    ∴CMBF=CEBE,
    ∴8-68=CM6,
    ∴CM=32,
    ∵点M在线段CQ的垂直平分线上,
    ∴CM=MQ,
    ∴1×t=32,
    ∴t=32;
    (2)如图1,过点Q作QN⊥AF于点N,
    ∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,
    ∴AC=AB2+BC2=64+36=10cm,EF=BF2+BE2=64+36=10cm,
    ∵CE=2cm,CM=32cm,
    ∴EM=EC2+CM2=4+94=52,
    ∵sin∠PAH=sin∠CAB,
    ∴BCAC=PHAP,
    ∴610=PH2t,
    ∴PH=65t,
    同理可求QN=6-45t,
    ∵四边形PQNH是矩形,
    ∴PH=NQ,
    ∴6-45t=65t,
    ∴t=3;
    ∴当t=3时,四边形PQNH为矩形;
    (3)如图2,过点Q作QN⊥AF于点N,
    由(2)可知QN=6-45t,
    ∵cs∠PAH=cs∠CAB,
    ∴AHAP=ABAC,
    ∴AH2t=810,
    ∴AH=85t,
    ∵四边形QCGH的面积为S=S梯形GMFH﹣S△CMQ﹣S△HFQ,
    ∴S=12×6×(8-85t+6+8-85t+32)-12×32×[6﹣(6-45t)]-12×(6-45t)(8-85t+6)=-1625t2+15t+572;
    (4)存在,
    理由如下:如图3,连接PF,延长AC交EF于K,
    ∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,
    ∴△ABC≌△EBF(SSS),
    ∴∠E=∠CAB,
    又∵∠ACB=∠ECK,
    ∴∠ABC=∠EKC=90°,
    ∵S△CEM=12×EC×CM=12×EM×CK,
    ∴CK=2×3252=65,
    ∵PF平分∠AFE,PH⊥AF,PK⊥EF,
    ∴PH=PK,
    ∴65t=10﹣2t+65,
    ∴t=72,
    ∴当t=72时,使点P在∠AFE的平分线上.
    11.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.
    (1)求证:AF=EF;
    (2)求MN+NG的最小值;
    (3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?
    【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;
    (2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC的一半,即可求解;
    (3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,从而推断出∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,从而可求出∠ABF=∠CEF=30°,即可证明.
    【解析】(1)连接CF,
    ∵FG垂直平分CE,
    ∴CF=EF,
    ∵四边形ABCD为菱形,
    ∴A和C关于对角线BD对称,
    ∴CF=AF,
    ∴AF=EF;
    (2)连接AC,
    ∵M和N分别是AE和EF的中点,点G为CE中点,
    ∴MN=12AF,NG=12CF,即MN+NG=12(AF+CF),
    当点F与菱形ABCD对角线交点O重合时,
    AF+CF最小,即此时MN+NG最小,
    ∵菱形ABCD边长为1,∠ABC=60°,
    ∴△ABC为等边三角形,AC=AB=1,
    即MN+NG的最小值为12;
    (3)不变,理由是:
    延长EF,交DC于H,
    ∵∠CFH=∠FCE+∠FEC,∠AFH=∠FAE+∠FEA,
    ∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,
    ∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:
    ∠AFD=∠CFD=12∠AFC,
    ∵AF=CF=EF,
    ∴∠AEF=∠EAF,∠FEC=∠FCE,
    ∴∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,
    ∴∠ABF=∠CEF,
    ∵∠ABC=60°,
    ∴∠ABF=∠CEF=30°,为定值.
    12.(2020•岳阳)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.
    (1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;
    (2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;
    (3)如图3,当t>94s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求AFCE的值.
    【分析】(1)先利用勾股定理求出AC,再判断出CP=AP,进而判断出△APF≌△CPE,即可得出结论;
    (2)先判断出AF=CE,PE=PF,再用勾股定理得出AQ2+AF2=QF2,即可得出结论;
    (3)先判断出△FAQ≌△FPQ(AAS),得出AQ=PQ=t,AF=PF,进而判断出PE=CE,再判断出△CNE∽△CBA,得出CE=58t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,得出PQ2+PE2=BQ2+BE2,∴t2+(58t)2=(6﹣t)2,进而求出t,即可得出结论.
    【解析】(1)∵四边形ABCD是矩形,
    ∴AD∥BC,∠ABC=90°,
    在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,
    由运动知,CP=t=5,
    ∴AP=AC﹣CP=5,
    ∴AP=CP,
    ∵AD∥BC,
    ∴∠PAF=∠PCE,∠AFP=∠CEP,
    ∴△APF≌△CPE(AAS),
    ∴AF=CE;
    (2)结论:AQ2+CE2=QE2,
    理由:如图2,
    连接FQ,由(1)知,△APF≌△CPE,
    ∴AF=CE,PE=PF,
    ∵EF⊥PQ,
    ∴QE=QF,
    在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,
    ∴AQ2+CE2=QE2;
    (3)如图3,
    由运动知,AQ=t,CP=t,
    ∴AP=AC﹣CP=10﹣t,
    ∵FQ平分∠AFE,
    ∴∠AFC=∠PFQ,
    ∵∠FAQ=∠FPQ=90°,FQ=FQ,
    ∴△FAQ≌△FPQ(AAS),
    ∴AQ=PQ=t,AF=PF,
    ∴BQ=AB﹣AQ=6﹣t,∠FAC=∠FPA,
    ∵∠DAC=∠ACB,∠APF=∠CPE,
    ∴∠ACB=∠CPE,
    ∴PE=CE,过点E作EN⊥AC于N,
    ∴CN=12CP=12t,∠CNE=90°=∠ABC,
    ∵∠NCE=∠BCA,
    ∴△CNE∽△CBA,
    ∴CEAC=CNCB,
    ∴CE10=12t8,
    ∴CE=58t,
    ∴PE=58t,BE=BC﹣CE=8-58t,
    在Rt△QPE中,QE2=PQ2+PE2,
    在Rt△BQE中,QE2=BQ2+BE2,
    ∴PQ2+PE2=BQ2+BE2,
    ∴t2+(58t)2=(6﹣t)2+(8-58t)2,
    ∴t=5011,
    ∴CP=t=5011,
    ∴AP=10﹣CP=6011,
    ∵AD∥BC,
    ∴△APF∽△CPE,
    ∴AFCE=APCP=60115011=65.
    相关试卷

    题型十一 综合探究题 类型三 与折叠有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型十一 综合探究题 类型三 与折叠有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型十一综合探究题类型三与折叠有关的探究题专题训练原卷版docx、题型十一综合探究题类型三与折叠有关的探究题专题训练解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    题型十一 综合探究题 类型四 与旋转有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型十一 综合探究题 类型四 与旋转有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型十一综合探究题类型四与旋转有关的探究题专题训练原卷版docx、题型十一综合探究题类型四与旋转有关的探究题专题训练解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    题型十一 综合探究题 类型一 非动态探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型十一 综合探究题 类型一 非动态探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型十一综合探究题类型一非动态探究题专题训练原卷版docx、题型十一综合探究题类型一非动态探究题专题训练解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        题型十一 综合探究题 类型二 与动点有关的探究题(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map