开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年陕西省中考模拟试卷09

    2024年陕西省中考模拟试卷09第1页
    2024年陕西省中考模拟试卷09第2页
    2024年陕西省中考模拟试卷09第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年陕西省中考模拟试卷09

    展开

    这是一份2024年陕西省中考模拟试卷09,共32页。试卷主要包含了实数的相反数是,下列计算正确的是等内容,欢迎下载使用。
    1.实数的相反数是( )
    A.B.C.D.6
    2.一块含角的直角三角板和直尺如图放置,若,则的度数为( )
    B.
    C.D.
    3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( )
    A.4×1012元 B.4×1010元C.4×1011元D.40×109元
    4.如果规定收入为正,那么支出为负,收入2元记作,支出5元记作( ).
    A.5元B.元C.元D.7元
    5.下列计算正确的是( )
    A.B.
    C.D.
    6.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是( )
    A.1,4,5B.2,3,5
    C.3,4,5D.2,2,4
    7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )
    A.2B.3C.4D.6
    8.如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是( )
    A.5B.6
    C.4D.5
    9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )
    A.55°B.65°
    C.60°D.75°
    如图,二次函数的图象与x轴交于,两点,下列说法正确的是( )
    抛物线的对称轴为直线
    抛物线的顶点坐标为
    ,两点之间的距离为
    当时,的值随值的增大而增大
    二.填空题(共 4 小题)
    11.若,,则的值是___________________.
    12.如图,在正五边形ABCDE中,连接AC,则∠BAC的度数为___________________.
    13.已知点在反比例函数的图像上,且,则下列结论一定正确的是 .
    14.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为 .
    解答题(共 11 小题)
    15.解不等式组:3x−5<x+12(2x−1)≥3x−4,并把它的解集在数轴上表示出来.
    16.解分式方程:xx−1+1=2x−1.
    17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
    18.在平行四边形中,点E、F分别在边和上,且.
    求证:.
    19,跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:
    100 110 114 114 120 122 122 131 144 148
    152 155 156 165 165 165 165 174 188 190
    对这组数据进行整理和分析,结果如下:
    请根据以上信息解答下列问题:
    (1)填空:______,______;
    (2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀?
    (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.
    20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.
    21.如图在平面直角坐标系中,一次函数的图像经过点、交反比例函数的图像于点,点在反比例函数的图像上,横坐标为,轴交直线于点,是轴上任意一点,连接、.
    (1)求一次函数和反比例函数的表达式;
    (2)求面积的最大值.

    22.一只不透明的袋子中装有4个小球,分别标有编号,这些小球除编号外都相同.
    (1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为________________.
    (2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)
    23.如图,在中,,以为直径的交于点D,,垂足为E.
    (1)求证:是的切线;
    (2)若,,求的长.
    24.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
    (1)求该抛物线的表达式;
    (2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
    25.如图1,四边形内接于,为直径,上存在点E,满足,连结并延长交的延长线于点F,与交于点G.
    (1)若,请用含的代数式表列.
    (2)如图2,连结.求证;.
    (3)如图3,在(2)的条件下,连结,.
    ①若,求的周长.
    ②求的最小值.
    2024 年陕西省中考数学模拟试卷
    一.选择题(共 10 小题)
    1.实数的相反数是( )
    A.B.C.D.6
    【答案】D
    【分析】根据相反数的意义,相反数是只有符号不同的两个数,改变前面的符号,即可得的相反数.
    【详解】解:的相反数是6.
    故选:D.
    【点睛】本题考查了相反数.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
    2.一块含角的直角三角板和直尺如图放置,若,则的度数为( )
    A.B.C.D.
    【答案】B
    【分析】
    先根据邻补角的定义得出∠3=180°-∠1=33°27′,再根据平行线的性质得到∠4=∠2,然后根据三角形的外角的性质即可得到结论.
    【详解】
    解:∵,
    ∴∠3=180°-∠1=33°27′,
    ∴∠4=∠3+30°=63°27′,∵AB∥CD,
    ∴∠2=∠4=63°27′,
    故选:B.
    【点睛】
    本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解此题的关键,注意:两直线平行,内错角相等.
    3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( )
    A.4×1012元B.4×1010元C.4×1011元D.40×109元
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
    【解析】4000亿=400000000000=4×1011,
    故选:C.
    4.如果规定收入为正,那么支出为负,收入2元记作,支出5元记作( ).
    A.5元B.元C.元D.7元
    【答案】B
    【分析】结合题意,根据正负数的性质分析,即可得到答案.
    【详解】根据题意得:支出5元记作元
    故选:B.
    【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.
    5.下列计算正确的是( )
    A.B.
    C.D.
    【答案】C
    【分析】
    根据合并同类项法则、同底数幂乘法法则、积的乘方及幂的乘方法则逐一计算即可得答案.
    【详解】
    A.,故该选项计算错误,不符合题意,
    B.,故该选项计算错误,不符合题意,
    C.,故该选项计算正确,符合题意,
    D.,故该选项计算错误,不符合题意,
    故选:C.
    【点睛】
    本题考查合并同类项、同底数幂乘法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.
    6.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是( )
    A.1,4,5B.2,3,5C.3,4,5D.2,2,4
    【答案】B
    【解析】
    【分析】
    根据勾股定理,,则小的两个正方形的面积等于大三角形的面积,再分别进行判断,即可得到面积最大的三角形.
    【详解】
    解:根据题意,设三个正方形的边长分别为a、b、c,
    由勾股定理,得,
    A、∵1+4=5,则两直角边分别为:1和2,则面积为:;
    B、∵2+3=5,则两直角边分别为:和,则面积为:;
    C、∵3+4≠5,则不符合题意;
    D、∵2+2=4,则两直角边分别为:和,则面积为:;
    ∵,
    故选:B.
    【点睛】
    本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.
    7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )
    A.2B.3C.4D.6
    【答案】B
    【解析】
    【分析】
    根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.
    【详解】
    解:在y=x+3中,令y=0,得x=﹣3,
    解得,,
    ∴A(﹣3,0),B(﹣1,2),
    ∴△AOB的面积=3×2=3,
    故选:B.
    【点睛】
    本题考查了两直线与坐标轴围成图形的面积,求出交点坐标是解题的关键.
    8.如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是( )
    A.5B.6C.4D.5
    【答案】C
    【解析】
    【分析】
    根据平行四边形的性质和角平分线的定义可得AD=BC=EB=5,根据勾股定理的逆定理可得∠AED=90°,再根据平行四边形的性质可得CD=AB=8,∠EDC=90°,根据勾股定理可求CE的长.
    【详解】
    解:∵CE平分∠BCD,
    ∴∠BCE=∠DCE,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC,AB∥CD,
    ∴∠BEC=∠DCE,
    ∴∠BEC=∠BCE,
    ∴BC=BE=5,
    ∴AD=5,
    ∵EA=3,ED=4,
    在△AED中,32+42=52,即EA2+ED2=AD2,
    ∴∠AED=90°,
    ∴CD=AB=3+5=8,∠EDC=90°,
    在Rt△EDC中,CE===4.
    故选:C.
    【点睛】
    此题主要考查了平行四边形的性质和角平分线的性质,勾股定理的逆定理,勾股定理,关键是掌握平行四边形对边平行且相等.
    9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )
    A.55°B.65°C.60°D.75°
    【答案】B
    【解析】
    【分析】
    连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.
    【详解】
    解:连接CD,
    ∵∠A=50°,
    ∴∠CDB=180°﹣∠A=130°,
    ∵E是边BC的中点,
    ∴OD⊥BC,
    ∴BD=CD,
    ∴∠ODB=∠ODC=∠BDC=65°,
    故选:B.
    【点睛】
    本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识.正确理解题意是解题的关键
    10.如图,二次函数的图象与x轴交于,两点,下列说法正确的是( )

    A.抛物线的对称轴为直线B.抛物线的顶点坐标为
    C.,两点之间的距离为D.当时,的值随值的增大而增大
    【答案】C
    【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.
    【详解】解:∵二次函数的图象与x轴交于,两点,


    ∴二次函数解析式为,对称轴为直线,顶点坐标为,故A,B选项不正确,不符合题意;
    ∵,抛物线开口向上,当时,的值随值的增大而减小,故D选项不正确,不符合题意;
    当时,

    ∴,
    ∴,故C选项正确,符合题意;
    故选:C.
    【点睛】本题考查了二次函数的性质,待定系数法求二次函数解析式,抛物线与坐标轴的交点,熟练掌握二次函数的性质是解题的关键.
    二.填空题(共 4 小题)
    11.若,,则的值是___________________.
    【答案】6
    【分析】先提公因式分解原式,再整体代值求解即可.
    【详解】解:,
    ∵,,
    ∴,
    ∴原式,
    故答案为:6.
    【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键.
    12.如图,在正五边形ABCDE中,连接AC,则∠BAC的度数为_____.
    【答案】36°
    【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC的度数.
    【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°
    ∴,
    ∴ .
    故答案为36°.
    【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.
    13.已知点在反比例函数的图像上,且,则下列结论一定正确的是 .
    【答案】
    【分析】把点A和点B的坐标代入解析式,根据条件可判断出、的大小关系.
    【详解】解:∵点,)是反比例函数的图像上的两点,
    ∴,
    ∵,
    ∴,即,故D正确.
    故选:D.
    【点睛】本题主要考查反比例函数图像上点的坐标特征,掌握图像上点的坐标满足函数解析式是解题的关键.
    14.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为 .
    【分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=32x,解得x=2,然后利用勾股定理计算OA,再计算AE的长.
    【解析】设BE=x,则CD=2x,
    ∵四边形ABCD为菱形,
    ∴AB=AD=CD=2x,OB=OD,AC⊥BD,
    ∵∠DAE=∠DEA,
    ∴DE=DA=2x,
    ∴BD=3x,
    ∴OB=OD=32x,
    ∵OE+BE=BO,
    ∴1+x=32x,解得x=2,
    即AB=4,OB=3,
    在Rt△AOB中,OA=42−32=7,
    在Rt△AOE中,AE=12+(7)2=22.
    故答案为22.
    解答题(共 11 小题)
    15.解不等式组:3x−5<x+12(2x−1)≥3x−4,并把它的解集在数轴上表示出来.
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】解不等式3x﹣5<x+1,得:x<3,
    解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,
    则不等式组的解集为﹣2≤x<3,
    将不等式组的解集表示在数轴上如下:
    16.解方程:xx−1+1=2x−1.
    【分析】根据解分式方程的步骤解答即可.
    【解析】方程的两边同乘x﹣1,得x+(x﹣1)=2,
    解这个一元一次方程,得x=32,
    经检验,x=32是原方程的解.
    17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
    【分析】:要满足条件:在BC边上求作一点P,使得点P到AC的距离等于BP的长,则DP为∠BDC的角平分线.
    【答案】解:如图所示,点P即为所求.
    18.在平行四边形中,点E、F分别在边和上,且.
    求证:.
    【答案】见解析
    【分析】平行四边形的性质得到,进而推出,得到四边形是平行四边形,即可得到.
    【详解】解:四边形是平行四边形,




    四边形是平行四边形,

    【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法,是解题的关键.
    19,跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:
    100 110 114 114 120 122 122 131 144 148
    152 155 156 165 165 165 165 174 188 190
    对这组数据进行整理和分析,结果如下:
    请根据以上信息解答下列问题:
    (1)填空:______,______;
    (2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀?
    (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.
    【答案】(1),
    (2)
    (3)是,理由见解析
    【分析】(1)根据众数与中位数的定义进行计算即可求解;
    (2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解;
    (3)根据中位数的定义即可求解;
    【详解】(1)解:这组数据中,165出现了4次,出现次数最多
    ∴,
    这组数据从小到大排列,第10个和11个数据分别为,
    ∴,
    故答案为:,.
    (2)解:∵跳绳165次及以上人数有7个,
    ∴估计七年级240名学生中,有个优秀,
    (3)解:∵中位数为,
    ∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.
    【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键.
    20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.
    【答案】80m.
    【解析】
    【分析】
    过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,可得四边形AMEC和四边形AMFB均为矩形,可以证明△BFN≌△CEM,得NF=EM=49,进而可得商业大厦的高MN.
    【详解】
    解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,
    ∴∠CEF=∠BFE=90°,
    ∵CA⊥AM,NM⊥AM,
    ∴四边形AMEC和四边形AMFB均为矩形,
    ∴CE=BF,ME=AC,∠1=∠2,
    ∴△BFN≌△CEM(ASA),
    ∴NF=EM=31+18=49,
    由矩形性质可知:EF=CB=18,
    ∴MN=NF+EM﹣EF=49+49﹣18=80(m).
    答:商业大厦的高MN为80m.
    【点睛】
    本题主要考查了全等三角形的性质和判定,解决本题的关键是构造直角三角形和矩形,得出NF=EM=AC.
    21.如图在平面直角坐标系中,一次函数的图像经过点、交反比例函数的图像于点,点在反比例函数的图像上,横坐标为,轴交直线于点,是轴上任意一点,连接、.
    (1)求一次函数和反比例函数的表达式;
    (2)求面积的最大值.
    【答案】(1);(2)
    【解析】
    【分析】
    (1)利用点、求解一次函数的解析式,再求的坐标,再求反比例函数解析式;
    (2)设 则再表示的长度,列出三角形面积与的函数关系式,利用函数的性质可得答案.
    【详解】
    解:(1)设直线AB为
    把点、代入解析式得:

    解得:
    直线为
    把代入得:

    把代入:


    (2)设 轴,
    则 由<<,


    即当时,
    【点睛】
    本题考查的是利用待定系数法求解一次函数与反比例函数的解析式,以及利用二次函数的性质求解面积的最值,掌握以上知识是解题的关键.
    22.一只不透明的袋子中装有4个小球,分别标有编号,这些小球除编号外都相同.
    (1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为________________.
    (2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)
    【答案】(1)
    (2)
    【分析】(1)直接利用概率公式求解即可求得答案;
    (2)画树状图表示所有等可能出现的情况,从中找出符合条件的结果数,进而求出概率.
    【详解】(1)解:搅匀后从中任意摸出1个球,这个球的编号是2的概率为;
    (2)如图,画树状图如下:

    所有可能的结果数为16个,第2次摸到的小球编号比第1次摸到的小球编号大1的结果数为3个,
    ∴第2次摸到的小球编号比第1次摸到的小球编号大1的概率为:.
    【点睛】本题考查简单随机事件的概率计算,利用列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.
    23.如图,在中,,以为直径的交于点D,,垂足为E.
    (1)求证:是的切线;
    (2)若,,求的长.
    【答案】(1)见解析
    (2)
    【分析】(1)如图:,然后根据等边对等角可得、即,再根据可得,进而得到即可证明结论;
    (2)如图:连接,有圆周角定理可得,再解直角三角形可得,进而得到,然后说明,最后根据弧长公式即可解答.
    【详解】(1)证明:如图:连接

    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴。
    ∵,
    ∴,
    ∴,
    ∵是的半径,
    ∴是的切线.
    (2)解:如图:连接
    ∵是的直径,
    ∴,
    在中,,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】本题主要考查了圆的切线证明、圆周角定理、解直角三角形、等腰三角形的性质等知识点,灵活运用相关知识是解答本题的关键.
    24.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
    (1)求该抛物线的表达式;
    (2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
    【分析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式,即可求解;
    (2)由题意得:PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,分点P在抛物线对称轴右侧、点P在抛物线对称轴的左侧两种情况,分别求解即可.
    【解析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得12=9+3b+c−3=4−2b+c,解得b=2c=−3,
    故抛物线的表达式为:y=x2+2x﹣3;
    (2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,
    故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),
    故OA=OC=3,
    ∵∠PDE=∠AOC=90°,
    ∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,
    设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,
    故n=22+2×2﹣5=5,故点P(2,5),
    故点E(﹣1,2)或(﹣1,8);
    当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,
    综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).
    25.如图1,四边形内接于,为直径,上存在点E,满足,连结并延长交的延长线于点F,与交于点G.
    (1)若,请用含的代数式表列.
    (2)如图2,连结.求证;.
    (3)如图3,在(2)的条件下,连结,.
    ①若,求的周长.
    ②求的最小值.
    【答案】(1);(2)见解析;(3)①;②
    【分析】
    (1)利用圆周角定理求得,再根据,求得,即可得到答案;
    (2)由,得到,从而推出,证得,由此得到结论;
    (3)①连结.利用已知求出,证得,得到,利用中,根据正弦求出,求出EF的长,再利用中,,求出EG及DE,再利用勾股定理求出DF即可得到答案;
    ②过点C作于H,证明,得到,证明,得到,设,得到,利用勾股定理得到 ,求得,利用函数的最值解答即可.
    【详解】
    解:(1)∵为的直径,
    ∴,
    ∵,
    ∴,
    ∴.
    (2)∵为的直径,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴.
    又∵,
    ∴,
    ∴.
    (3)①如图,连结.
    ∵为的直径,
    ∴.
    在中,,,
    ∴.
    ∵,
    ∴,
    即,
    ∴.
    ∵,
    ∴.
    ∵在中,,
    ∴,
    ∴.
    ∵在中,,
    ∴.
    在中,,
    ∴,
    ∴的周长为.
    ②如图,过点C作于H.
    ∵,
    ∴.
    ∵,
    ∴.
    ∴,
    ∵,
    ∴.
    ∵,
    ∴.
    ∵,
    ∴,
    ∵,
    ∴,
    ∴.
    设,
    ∴,
    ∴.
    在中, ,
    ∴,
    当时,的最小值为3,
    ∴的最小值为.
    【点睛】
    此题考查圆周角的定理,弧、弦和圆心角定理,全等三角形的判定及性质,勾股定理,三角函数,相似三角形的判定,函数的最值问题,是一道综合的几何题型,综合掌握各知识点是解题的关键.
    平均数
    众数
    中位数
    145
    平均数
    众数
    中位数
    145

    相关试卷

    2024年陕西省中考模拟试卷06:

    这是一份2024年陕西省中考模拟试卷06,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年陕西省中考模拟试卷05:

    这是一份2024年陕西省中考模拟试卷05,共31页。试卷主要包含了的倒数是,若,则x,y的值为,计算等内容,欢迎下载使用。

    2024年陕西省中考模拟试卷04:

    这是一份2024年陕西省中考模拟试卷04,共30页。试卷主要包含了计算的结果是,先化简,再求代数式的值,其中等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map