内蒙古通辽市科尔沁区2023-2024学年八年级上学期期末数学试题
展开
这是一份内蒙古通辽市科尔沁区2023-2024学年八年级上学期期末数学试题,共11页。试卷主要包含了考试结束后,只需将答题卡上交,下列计算正确的是,先化简等内容,欢迎下载使用。
考生须知:
1.本试卷共三大题,共26小题,满分120分.考试时间120分钟
2.根据网上阅卷需要,本试卷所有试题均按要求在答题卡上作答,答在本试卷内无效.
3.考试结束后,只需将答题卡上交.
一、选择题:本大题共10小题,每小题3分,共30分.每个小题都给出了四个选项,其中只有一个是正确的,请将你认为代表正确选项的字母在答题卡上用2B铅笔涂黑.
1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( )
A.B.C.D.
2.第19届亚运会于2023年9月23日至10月8日在杭州举行,共产生金牌482枚,银牌480枚,铜牌631枚,奖牌取名“湖山”,以良渚文化中的礼器玉琮为表征,将八边形和圆形奖章融为一体,别具一格,具有很高的辨识度,请问这个八边形的内角和是多少度?( )
A.720°B.900°C.1080°D.1260°
3.已知三角形两边长为5和8,则第三边长a的取值范围是( )
A.B.C.D.
4.下列计算正确的是( )
A.B.
C.D.
5.下列等式从左到右的变形,属于因式分解的是( )
A.B.
C.D.
6.如图,在中,通过尺规作图,得到直线和射线,仔细观察作图痕迹,若,则的度数为( )
A.B.C.D.
7.将分式中的的值同时扩大为原来的3倍,则分式的值( )
A.扩大6倍B.扩大3倍C.不变D.扩大9倍
8.将一副三角板按如图所示的方式放置,图中的大小等于( )
A.B.C.D.
8.如图,,且点恰好落在线段上,,则的度数为( )
A.B.C.D.
9.如图,在中,的角平分线交于点于点,若与的周长分别为13和3,则的长为( )
A.10B.16C.8D.5
二、填空题:本大题共7小题,每小题3分,共21分.把答案直接填在答题卡对应横线上.
11.华为Mate60搭载了最新一代处理器麒麟9l00,这款芯片采用了最先进的7nm制造工艺,已知,将0.000000007用科学记数法表示为:______.
12.分式和的最简公分母为______.
13.若与的乘积中不含的一次项,则______.
14.分别观察下列四组图形,在每个图形的下方,都有一个等式,其中图形与等式之间的对应关系表达相符的共有______组.(填组数)
15.如果,那么______.
16.若等腰三角形中有一个角等于65°,则这个等腰三角形的底角的度数为______.
17.如图,在中,为中线,过点作于点,过点作于点.在延长线上取一点,连接,使.下列结论中正确的有______.(写序号)
①;②;
③;④
三、解答题:本大题共9小题,共69分.请在答题卡上写出各小题解答的文字说明、证明过程或计算步骤.
18.(8分)计算:
(1)化简:;
(2)计算:.
19.(8分)解方程:
(1);
(2)
20.(6分)先化简:,再从中选取一个使原式有意义的数作为的值代入求值.
21.(6分)如图,在和中,点在同一直线上,,求证:.
22.(7分)如图,在平面直角坐标系中,的顶点坐标.
(1)请在图中画出关于轴对称的图形(其中分别是的对应点,不写画法);
(2)直接写出三点的坐标:______,______,______;
(3)在轴上画出点,使得最小.
23.(8分)为有效落实双减工作,切实做到减负提质,很多学校决定在课后服务中增加乒乓球项目.体育用品商店得知后,第一次用900元购进乒乓球若干盒,第二次又用900元购进该款乒乓球,但这次每盒的进价是第一次进价的1.2倍,购进数量比第一次少了30盒.
(1)求第一次每盒乒乓球的进价是多少元?
(2)若要求这两次购进的乒乓球按同一价格全部销售完后获利不低于510元,则每盒乒乓球的售价至少是多少元?
24.(8分)如图,在等腰中,,腰的垂直平分线交底于点,垂足为点.
(1)求的度数;
(2)若,求的长.
25.(9分)
【问题提出】
计算:
【问题探究】
为便于研究发现规律,我们可以将问题“一般化”,即将算式中特殊的数字3用具有一般性的字母代替,原算式化为:
然后我们再从最简单的情形入手,从中发现规律,找到解决问题的方法:
①
②由①知,所以,
(1)仿照②,写出将进行因式分解的过程.
【发现规律】
(2)______.
【问题解决】
(3)计算:.
(结果用乘方表示)
26.(9分)
【阅读理解】
课外兴趣小组活动时,老师提出了如下问题:
如图1,中,若,求边上的中线的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:如图2,延长到点,使,连结.请根据小明的方法思考:
(1)证明.
(2)的取值范围是______.
(3)【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.
【问题解决】如图3,是的中线,交于点,交于,且.求证:.
图1 图2 图3
2023-2024学年度上学期科尔沁区中小学生学科素养专项数据采集试卷
八年级数学参考答案
一、选择题(共10小题,共30分,每小题3分)
1.D 2.C 3.A 4.B 5.C 6.A 7.D 8.C 9.B 10.D
二、填空题(共7小题,共21分,每小题3分)
11. 12. 13. 14. 四
15. 20 16. 57.5°或65° 17. ①②③④
三、解答题(共9小题,共69分)
18. (8分)
(1)解:原式= ·······························2分
=·················································4分
(2)解:原式= ·············································2分
= ····················································4分
19. (8分)
(1)解:方程两边乘 ,得
····································1分
解得 .················································2分
检验:当时,.···························3分
所以,原分式方程的解为.·······························4分
(2)解:方程两边乘 ,得
······························1分
解得.··················································2分
检验:当时,.因此不是原分式方程的解.····3分
所以,原分式方程无解.·······································4分
20.(6分)
解:原式 ······················1分
····················2分
··································3分
.···············································4分,
.··············································5分
∴当时,原式=﹣3+1=﹣2.··························6分
21. (6分)
证明:∵BF=CE,
∴BF+FC=CE+FC,即BC=EF.····································2分
∵AB∥DE,
∴∠B=∠E.··················································4分
在△ABC和△DEF中
,
∴△ABC≌△DEF(SAS).········································6分
22.(7分)
解:(1)按照轴对称图形的特点作图1如下:
△A1B1C1即为所作;··············································2分
(2)根据(1)的图形可知:A1(1,5),B1(1,0),C1(4,3);·····3分
(3)先作B点关于y轴的对称点B2,连接AB2,交于y轴于点P,连接BP,如图2,P点即为所求.(作图方法不唯一) ·························2分
23. (8分)
解:(1)设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是1.2x元,
由题意得:······································2分
解得:x=5,··················································3分
经检验:x=5是原分式方程的解,且符合题意. ···················4分
答:第一次每盒乒乓球的进价是5元;
(2)设每盒乒乓球的售价为元,
第一次每盒乒乓球的进价为5元,则第二次每盒乒乓球的进价为5×1.2=6(元),·······················································1分
由题意得:,······················3分
解得:.·················································4分
答:每盒乒乓球的售价至少是7元.
24. (8分)
解:(1)∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,···········································2分
∵DE是AB的垂直平分线.
∴DA=DB,∠BAD=∠B=30°;································4分
(2)∵∠BAC=120°,∠BAD=30°,
∴∠CAD=90°. ·············································1分
又∠C=30°, DA=DB=2cm
∴CD=2DA=4cm,············································3分
∴BC=CD+DB=6cm.··········································4分
25. (9分)
解:(1)1+a+a(1+a)+a(1+a)2+a(1+a)3
=(1+a)(1+a)+a(1+a)2+a(1+a)3······························1分
=(1+a)2(1+a)+a(1+a)3·····································2分
=(1+a)3+a(1+a)3···········································3分
=(1+a)3(1+a)
=(1+a)4;···················································4分
(2)发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=(1+a)n+1;
故答案为:(1+a)n+1;··········································3分
(3)由(2)发现的规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=(1+a)n+1;
当a=3,n=6时,
1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6 =(1+3)6+1
=47 ························································2分
26. (9分)
(1)解:如图2,延长AD到点E,使DE=AD,连结BE.···········1分
∵AD为BC的中线,
∴BD=CD,···················································2分
又∵AD=DE,∠ADC=∠EDB,
∴△ADC≌△EDB(SAS)········································3分
(2)解:∵△ADC≌△EDB,
∴AC=BE=6,
在△ABE中,AB﹣BE<AE<AB+BE,······························1分
∴8﹣6<2AD<8+6,
∴1<AD<7,················································2分
故答案为:1<AD<7;
(3)证明:延长AD到点M,使AD=MD,连接BM,
∵AD是△ABC中线,
∴DC=DB,
在△ADC和△MDB中,
∴△ADC≌△MDB(SAS),······································2分
∴AC=MB,∠CAD=∠M,
∵AE=EF,
∴∠CAD=∠AFE,
∵∠AFE=∠BFD,
∴∠BFD=∠M,·············································3分
∴BF=BM,
又∵AC=MB,
∴AC=BF.················································4分
相关试卷
这是一份2021年内蒙古通辽市科尔沁区初中学业考试模拟数学试题(PDF版),共6页。
这是一份内蒙古自治区通辽市科尔沁区2023年八年级上学期期末数学试题附答案,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份内蒙古自治区通辽市科尔沁区2022年七年级上学期期末数学试题解析版,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。