终身会员
搜索
    上传资料 赚现金
    人教版七年级数学下册同步压轴题 专题01 相交线与平行线中的四种几何模型全攻略(原卷版+解析版)
    立即下载
    加入资料篮
    人教版七年级数学下册同步压轴题 专题01 相交线与平行线中的四种几何模型全攻略(原卷版+解析版)01
    人教版七年级数学下册同步压轴题 专题01 相交线与平行线中的四种几何模型全攻略(原卷版+解析版)02
    人教版七年级数学下册同步压轴题 专题01 相交线与平行线中的四种几何模型全攻略(原卷版+解析版)03
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版七年级数学下册同步压轴题 专题01 相交线与平行线中的四种几何模型全攻略(原卷版+解析版)

    展开
    这是一份人教版七年级数学下册同步压轴题 专题01 相交线与平行线中的四种几何模型全攻略(原卷版+解析版),共33页。试卷主要包含了猪脚模型,铅笔模型,锄头模型,齿距模型等内容,欢迎下载使用。


    类型一、猪脚模型
    例.问题情境:如图①,直线,点E,F分别在直线AB,CD上.
    (1)猜想:若,,试猜想______°;
    (2)探究:在图①中探究,,之间的数量关系,并证明你的结论;
    (3)拓展:将图①变为图②,若,,求的度数.
    【变式训练1】已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.
    (1)如图,当点在线段上运动时,试说明∠1+∠3=∠2;
    (2)当点P在线段EF外运动时有两种情况.
    ①如图2写出∠1,∠2,∠3之间的关系并给出证明;
    ②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).
    【变式训练2】阅读下面内容,并解答问题.
    已知:如图1,,直线分别交,于点,.的平分线与的平分线交于点.
    (1)求证:;
    (2)填空,并从下列①、②两题中任选一题说明理由.我选择 题.
    ①在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为 .
    ②如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为 .
    【变式训练3】如图:
    (1)如图1,,,,直接写出的度数.
    (2)如图2,,点为直线,间的一点,平分,平分,写出与之间的关系并说明理由.
    (3)如图3,与相交于点,点为内一点,平分,平分,若,,直接写出的度数.
    类型二、铅笔模型
    例.问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.
    (1)丽丽同学看过图形后立即口答出:∠APC=85°,请补全她的推理依据.
    如图2,过点P作PE∥AB,
    因为AB∥CD,所以PE∥CD.( )
    所以∠A+∠APE=180°,∠C+∠CPE=180°.( )
    因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,
    ∠APC=∠APE+∠CPE=85°.
    问题迁移:
    (2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有什么数量关系?请说明理由.
    (3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请直接写出∠CPD与∠α、∠β之间的数量关系.

    【变式训练1】已知,直线AB∥CD
    (1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?
    (2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?
    (3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.
    【变式训练2】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC度数.
    思路点拨:
    小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可分别求出∠APE、∠CPE的度数,从而可求出∠APC的度数;
    小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∠APC的度数;
    小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∠APC的度数.
    问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∠APC的度数为 °;
    问题迁移:(1)如图5,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
    (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
    类型三、锄头模型
    例.已知,AB∥CD.点M在AB上,点N在CD上.
    (1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
    如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
    (2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
    (3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
    【变式训练1】(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.
    (2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.
    (3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.
    【变式训练2】已知,点为平面内一点,于.
    (1)如图1,点在两条平行线外,则与之间的数量关系为______;
    (2)点在两条平行线之间,过点作于点.
    ①如图2,说明成立的理由;
    ②如图3,平分交于点平分交于点.若,求的度数.
    类型四、齿距模型
    例.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.
    【变式训练1】如图1,已知AB∥CD,∠B=30°,∠D=120°;
    (1)若∠E=60°,则∠F= ;
    (2)请探索∠E与∠F之间满足的数量关系?说明理由;
    (3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.
    【变式训练2】如图1,点、分别在直线、上,,.
    (1)求证:;(提示:可延长交于点进行证明)
    (2)如图2,平分,平分,若,求与之间的数量关系;
    (3)在(2)的条件下,如图3,平分,点在射线上,,若,直接写出的度数.
    专题01 相交线与平行线中的四种几何模型全攻略
    类型一、猪脚模型
    例.问题情境:如图①,直线,点E,F分别在直线AB,CD上.
    (1)猜想:若,,试猜想______°;
    (2)探究:在图①中探究,,之间的数量关系,并证明你的结论;
    (3)拓展:将图①变为图②,若,,求的度数.
    【答案】(1)
    (2);证明见详解
    (3)
    【详解】(1)解:如图过点作,
    ∵,
    ∴.
    ∴,

    ∵,,

    ∴.
    ∵,
    ∴∠P=80°.
    故答案为:;
    (2)解:,理由如下:
    如图过点作,
    ∵,
    ∴.
    ∴,


    ∵,

    (3)如图分别过点、点作、
    ∵,
    ∴.
    ∴,



    ∵,




    故答案为:.
    【变式训练1】已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.
    (1)如图,当点在线段上运动时,试说明∠1+∠3=∠2;
    (2)当点P在线段EF外运动时有两种情况.
    ①如图2写出∠1,∠2,∠3之间的关系并给出证明;
    ②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).
    【答案】(1)证明见详解
    (2)①;证明见详解;②;证明见详解
    【详解】(1)解:如图4所示:过点作,


    ∴,,
    ∵,
    ∴;
    (2)解:①如图5过点作,


    ∴,,
    ∵,
    ∴;
    ②如图6过点作,


    ∴,,
    ∵,
    ∴.
    【变式训练2】阅读下面内容,并解答问题.
    已知:如图1,,直线分别交,于点,.的平分线与的平分线交于点.
    (1)求证:;
    (2)填空,并从下列①、②两题中任选一题说明理由.我选择 题.
    ①在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为 .
    ②如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为 .
    【答案】(1)见解析
    (2)①;②结论:
    【详解】(1)证明:如图,过作,
    ,,


    平分,平分,
    ,,

    在中,,


    (2)解:①如图2中,由题意,,
    平分,平分,


    故答案为:;
    ②结论:.
    理由:如图3中,由题意,,,
    平分,平分,
    ,,

    故答案为:.
    【变式训练3】如图:
    (1)如图1,,,,直接写出的度数.
    (2)如图2,,点为直线,间的一点,平分,平分,写出与之间的关系并说明理由.
    (3)如图3,与相交于点,点为内一点,平分,平分,若,,直接写出的度数.
    【答案】(1)∠BED=66°;
    (2)∠BED=2∠F,见解析;
    (3)∠BED的度数为130°.
    【详解】(1)解:(1)如图,作EF∥AB,

    ∵直线AB∥CD,
    ∴EF∥CD,
    ∴∠ABE=∠1=45°,∠CDE=∠2=21°,
    ∴∠BED=∠1+∠2=66°;
    (2)解:∠BED=2∠F,
    理由是:过点E作EG∥AB,延长DE交BF于点H,
    ∵AB∥CD,∴AB∥CD∥EG,
    ∴∠5=∠1+∠2,∠6=∠3+∠4,
    又∵BF平分∠ABE,DF平分∠CDE,
    ∴∠2=∠1,∠3=∠4,则∠5=2∠2,∠6=2∠3,
    ∴∠BED=2(∠2+∠3) ,
    又∠F+∠3=∠BHD,∠BHD+∠2=∠BED,
    ∴∠3+∠2+∠F=∠BED,
    综上∠BED=∠F+12∠BED,即∠BED=2∠F;
    (3)解:延长DF交AB于点H,延长GE到I,
    ∵∠BGD=60°,
    ∴∠3=∠1+∠BGD=∠1+60°,∠BFD=∠2+∠3=∠2+∠1+60°=95°,
    ∴∠2+∠1=35°,即2(∠2+∠1) =70°,
    ∵BF平分∠ABE,DF平分∠CDE,
    ∴∠ABE=2∠2,∠CDE=2∠1,
    ∴∠BEI=∠ABE +∠BGE=2∠2+∠BGE,∠DEI=∠CDE+∠DGE=2∠1+∠DGE,
    ∴∠BED=∠BEI+∠DEI=2(∠2+∠1)+( ∠BGE+∠DGE)=70°+60°=130°,
    ∴∠BED的度数为130°.
    类型二、铅笔模型
    例.问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.
    (1)丽丽同学看过图形后立即口答出:∠APC=85°,请补全她的推理依据.
    如图2,过点P作PE∥AB,
    因为AB∥CD,所以PE∥CD.( )
    所以∠A+∠APE=180°,∠C+∠CPE=180°.( )
    因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,
    ∠APC=∠APE+∠CPE=85°.
    问题迁移:
    (2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有什么数量关系?请说明理由.
    (3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请直接写出∠CPD与∠α、∠β之间的数量关系.

    【答案】(1)平行于同一条直线的两条直线平行(或平行公理推论),两直线平行,同旁内角互补;(2),理由见解析;(3)或
    【详解】解:(1)如图2,过点P作PE∥AB,
    因为AB∥CD,所以PE∥CD.(平行于同一条直线的两条直线平行)
    所以∠A+∠APE=180°,∠C+∠CPE=180°.(两直线平行同旁内角互补)
    因为∠PAB=140°,∠PCD=135°,
    所以∠APE=40°,∠CPE=45°,
    ∠APC=∠APE+∠CPE=85°.
    故答案为:平行于同一条直线的两条直线平行;两直线平行,同旁内角互补;
    (2)∠CPD=∠α+∠β,理由如下:
    如图3所示,过P作PE∥AD交CD于E,
    ∵AD∥BC,
    ∴AD∥PE∥BC,
    ∴∠α=∠DPE,∠β=∠CPE,
    ∴∠CPD=∠DPE+∠CPE=∠α+∠β;
    (3)当P在BA延长线时,如图4所示:
    过P作PE∥AD交CD于E,
    同(2)可知:∠α=∠DPE,∠β=∠CPE,
    ∴∠CPD=∠β-∠α;
    当P在AB延长线时,如图5所示:
    同(2)可知:∠α=∠DPE,∠β=∠CPE,
    ∴∠CPD=∠α-∠β.
    综上所述,∠CPD与∠α、∠β之间的数量关系为:∠CPD=∠β-∠α或∠CPD=∠α-∠β.
    【变式训练1】已知,直线AB∥CD
    (1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?
    (2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?
    (3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.
    【答案】(1)70°;(2)∠AGC=(x+y)°;(3)∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.
    【详解】解:(1)如图,过点G作GE∥AB,
    ∵AB∥GE,
    ∴∠A+∠AGE=180°(两直线平行,同旁内角互补).
    ∵∠A=140°,
    ∴∠AGE=40°.
    ∵AB∥GE,AB∥CD,
    ∴GE∥CD.
    ∴∠C+∠CGE=180°(两直线平行,同旁内角互补).
    ∵∠C=150°,
    ∴∠CGE=30°.
    ∴∠AGC=∠AGE+∠CGE=40°+30°=70°.
    (2)如图,过点G作GF∥AB
    ∵AB∥GF,
    ∴∠A=AGF(两直线平行,内错角相等).
    ∵AB∥GF,AB∥CD,
    ∴GF∥CD.
    ∴∠C=∠CGF.
    ∴∠AGC=∠AGF+∠CGF=∠A+∠C .
    ∵∠A=x°,∠C=y°,
    ∴∠AGC=(x+y)°.
    (3)如图所示,过点E作EM∥AB,过点F作FN∥AB,过点G作GQ∥CD,
    ∵AB∥CD,∴AB∥EM∥FN∥GQ∥CD.
    ∴∠BAE=∠AEM,∠MEF=∠EFN,∠NFG=∠FGQ,∠QGC=∠GCD(两直线平行,内错角相等).
    ∴∠AEF=∠BAE+∠EFN,∠FGC=∠NFG+GCD.
    ∵∠EFN+∠NFG=∠EFG,∴∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.
    【变式训练2】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC度数.
    思路点拨:
    小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可分别求出∠APE、∠CPE的度数,从而可求出∠APC的度数;
    小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∠APC的度数;
    小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∠APC的度数.
    问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∠APC的度数为 °;
    问题迁移:(1)如图5,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
    (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
    【答案】问题解决:110°;问题迁移:(1)∠CPD=∠α+∠β,理由见解析;(2)∠CPD=∠β﹣∠α,理由见解析
    【详解】解:小明的思路:如图2,过P作PE∥AB,
    ∵AB∥CD,
    ∴PE∥AB∥CD,
    ∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,
    ∴∠APC=50°+60°=110°,
    故答案为:110;
    (1)∠CPD=∠α+∠β,理由如下:
    如图5,过P作PE∥AD交CD于E,
    ∵AD∥BC,
    ∴AD∥PE∥BC,
    ∴∠α=∠DPE,∠β=∠CPE,
    ∴∠CPD=∠DPE+∠CPE=∠α+∠β;
    (2)当P在BA延长线时,∠CPD=∠β﹣∠α;
    理由:如图6,过P作PE∥AD交CD于E,
    ∵AD∥BC,
    ∴AD∥PE∥BC,
    ∴∠α=∠DPE,∠β=∠CPE,
    ∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;
    当P在BO之间时,∠CPD=∠α﹣∠β.
    理由:如图7,过P作PE∥AD交CD于E,
    ∵AD∥BC,
    ∴AD∥PE∥BC,
    ∴∠α=∠DPE,∠β=∠CPE,
    ∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.
    类型三、锄头模型
    例.已知,AB∥CD.点M在AB上,点N在CD上.
    (1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
    如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
    (2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
    (3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
    【答案】(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°
    【详解】解:(1)过E作EH∥AB,如图1,
    ∴∠BME=∠MEH,
    ∵AB∥CD,
    ∴HE∥CD,
    ∴∠END=∠HEN,
    ∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
    即∠BME=∠MEN﹣∠END.
    如图2,过F作FH∥AB,
    ∴∠BMF=∠MFK,
    ∵AB∥CD,
    ∴FH∥CD,
    ∴∠FND=∠KFN,
    ∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,
    即:∠BMF=∠MFN+∠FND.
    故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
    (2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
    ∵NE平分∠FND,MB平分∠FME,
    ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
    ∵2∠MEN+∠MFN=180°,
    ∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,
    ∴2∠BME+2∠END+∠BMF﹣∠FND=180°,
    即2∠BMF+∠FND+∠BMF﹣∠FND=180°,
    解得∠BMF=60°,
    ∴∠FME=2∠BMF=120°;
    (3)∠FEQ的大小没发生变化,∠FEQ=30°.
    由(1)知:∠MEN=∠BME+∠END,
    ∵EF平分∠MEN,NP平分∠END,
    ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,
    ∵EQ∥NP,
    ∴∠NEQ=∠ENP,
    ∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,
    ∵∠BME=60°,
    ∴∠FEQ=×60°=30°.
    【变式训练1】(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.
    (2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.
    (3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.
    【答案】(1)∠B+∠BPD+∠D=360°,理由见解析;(2)∠BPD=∠B+∠D,理由见解析;(3)∠BPD=∠D-∠B或∠BPD=∠B-∠D,理由见解析
    【详解】解:(1)如图(1)过点P作EF∥AB,
    ∴∠B+∠BPE=180°,
    ∵AB∥CD,EF∥AB,
    ∴EF∥CD,
    ∴∠EPD+∠D=180°,
    ∴∠B+∠BPE+∠EPD+∠D=360°,
    ∴∠B+∠BPD+∠D=360°.
    (2)∠BPD=∠B+∠D.
    理由:如图2,过点P作PE∥AB,
    ∵AB∥CD,
    ∴PE∥AB∥CD,
    ∴∠1=∠B,∠2=∠D,
    ∴∠BPD=∠1+∠2=∠B+∠D.
    (3)如图(3),∠BPD=∠D-∠B.
    理由:∵AB∥CD,
    ∴∠1=∠D,
    ∵∠1=∠B+∠BPD,
    ∴∠D=∠B+∠BPD,
    即∠BPD=∠D-∠B;
    如图(4),∠BPD=∠B-∠D.
    理由:∵AB∥CD,
    ∴∠1=∠B,
    ∵∠1=∠D+∠BPD,
    ∴∠B=∠D+∠BPD,
    即∠BPD=∠B-∠D.
    【变式训练2】已知,点为平面内一点,于.
    (1)如图1,点在两条平行线外,则与之间的数量关系为______;
    (2)点在两条平行线之间,过点作于点.
    ①如图2,说明成立的理由;
    ②如图3,平分交于点平分交于点.若,求的度数.
    【答案】(1)∠A+∠C=90°;(2)①见解析;②105°
    【详解】解:(1)如图1,AM与BC的交点记作点O,
    ∵AM∥CN,
    ∴∠C=∠AOB,
    ∵AB⊥BC,
    ∴∠A+∠AOB=90°,
    ∴∠A+∠C=90°;
    (2)①如图2,过点B作BG∥DM,
    ∵BD⊥AM,
    ∴DB⊥BG,
    ∴∠DBG=90°,
    ∴∠ABD+∠ABG=90°,
    ∵AB⊥BC,
    ∴∠CBG+∠ABG=90°,
    ∴∠ABD=∠CBG,
    ∵AM∥CN,BG∥DM,

    ∴∠C=∠CBG,
    ∠ABD=∠C;
    ②如图3,过点B作BG∥DM,
    ∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,
    由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,
    设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,
    ∠BFC=3∠DBE=3α,∴∠AFC=3α+β,
    ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,
    △BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,
    ∵AB⊥BC,∴β+β+2α=90°,
    ∴α=15°,∴∠ABE=15°,
    ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
    类型四、齿距模型
    例.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.
    【答案】y=90°-x+z.
    【详解】解:作CG//AB,DH//EF,
    ∵AB//EF,
    ∴AB//CG//HD//EF,
    ∴∠x=∠1,∠CDH=∠2,∠HDE=∠z
    ∵∠BCD=90°
    ∴∠1+∠2=90°,
    ∠y=∠CDH+∠HDE=∠z+∠2,
    ∵∠2=90°-∠1=90°-∠x,
    ∴∠y=∠z+90°-∠x.
    即y=90°-x+z.
    【变式训练1】如图1,已知AB∥CD,∠B=30°,∠D=120°;
    (1)若∠E=60°,则∠F= ;
    (2)请探索∠E与∠F之间满足的数量关系?说明理由;
    (3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.
    【答案】(1);(2),理由见解析;(3)
    【详解】(1)解:如图1,分别过点,作,,

    ,,
    又,,


    又,

    ,,

    故答案为:;
    (2)解:如图1,分别过点,作,,

    ,,
    又,,


    又,

    ,,
    ,;
    (3)解:如图2,过点作,由(2)知,,
    设,则,
    平分,平分,
    ,,
    ,,,
    ,.
    【变式训练2】如图1,点、分别在直线、上,,.
    (1)求证:;(提示:可延长交于点进行证明)
    (2)如图2,平分,平分,若,求与之间的数量关系;
    (3)在(2)的条件下,如图3,平分,点在射线上,,若,直接写出的度数.
    【答案】(1)见解析;(2),见解析;(3)或.
    【详解】解:(1)如图1,延长交于点,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴;
    (2)延长交于点,交于点,
    ∵,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵平分,平分,
    ∴,,
    ∴,
    ∵,,
    ∴;
    (3)当在直线下方时,如图,设射线交于,
    ∵,
    ∴,
    ∵平分,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴,
    即,
    解得:.
    当在直线上方时,如图,同理可证得,
    则有,
    解得:.
    综上,故答案为或.
    相关试卷

    浙教版七年级数学下册专题14解题技巧专题:特殊的因式分解法压轴题四种模型全攻略(原卷版+解析): 这是一份浙教版七年级数学下册专题14解题技巧专题:特殊的因式分解法压轴题四种模型全攻略(原卷版+解析),共34页。

    浙教版七年级数学下册专题01平行线的判定压轴题五种模型全攻略(原卷版+解析): 这是一份浙教版七年级数学下册专题01平行线的判定压轴题五种模型全攻略(原卷版+解析),共32页。

    初中数学苏科版七年级下册第7章 平面图形的认识(二)7.3 图形的平移达标测试: 这是一份初中数学苏科版七年级下册<a href="/sx/tb_c17268_t7/?tag_id=28" target="_blank">第7章 平面图形的认识(二)7.3 图形的平移达标测试</a>,共33页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版七年级数学下册同步压轴题 专题01 相交线与平行线中的四种几何模型全攻略(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map