人教版七年级数学上册同步压轴题期末考试压轴题训练1(学生版+解析)
展开A.15°B.75°C.15°或75°D.不能确定
2.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.
方案一:第一次降价10%,第二次降价30%;
方案二:第一次降价20%,第二次降价15%;
方案三:第一、二次降价均为20%.三种方案哪种降价最多( )
A.方案一B.方案二C.方案三D.不能确定
3.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2019次相遇在哪条边上?( )
A.ADB.DCC.BCD.AB
4.观察下列一组图形,第①个图形有3个小圆圈,第②个图形有5个小圆圈,第③个图形有9个小圆圈,第④个图形有15个小圆圈,…,按此规律排列下去,第9个图形中小圆圈的个数为( )
A.59B.75C.81D.93
5.计算的结果是( )
A.B.C.D.
6.若,,且的绝对值与相反数相等,则的值是( )
A.B.C.或D.2或6
7.若多项式(m为常数)不含项,则____________.
8.已知,,都是不等于0的有理数,且的最大值是,最小值是,则______.
9.如图,在数轴上,点表示1,现将点沿数轴做如下移动:第一次将点向左移动3个单位长度到达点,第2次将点向右平移6个单位长度到达点,第3次将点向左移动9个单位长度到达点…,则第2020次移动到点时,在数轴上对应的实数是_________.
10.如图,数轴上的O点为原点,A点表示的数为,动点P从O点出发,按以下规律跳动:第1次从O点跳动到OA的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处,…,第n次从点跳动到的中点处,按照这样的规律继续跳动到点,,,…,(,n是整数)处,那么点所表示的数为_________.
11.已知关于x的方程的解为正整数,则整数k的值为_________.
12.如图一,已知数轴上,点表示的数为,点表示的数为,动点从出发,以个单位每秒的速度沿射线的方向向右运动,运动时间为秒
(1)线段__________.
(2)当点运动到的延长线时_________.(用含的代数式表示)
(3)如图二,当秒时,点是的中点,点是的中点,求此时的长度.
(4)当点从出发时,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,
①点表示的数为:_________(用含的代数式表示),
点表示的数为:__________(用含的代数式表示).
②存在这样的值,使、、三点有一点恰好是以另外两点为端点的线段的中点,请直接写出值.______________.
13.数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!
(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.
①如果点A所表示的数是,那么点B所表示的数是_______;
②在图1中标出原点O的位置;
(2)图2是小敏所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.
根据小敏提供的信息,标出隐藏的原点O的位置,并写出此时点C所表示的数是____________;
(3)如图3,数轴上标出若干个点,其中点A,B,C所表示的数分别为a,b,c.若数轴上标出的若干个点中每相邻两点相距1个单位(如AB=1),且.
①试求a的值;
②若点D也在这条数轴上,且CD=2,求出点D所表示的数.
14.已知∠AOB=120°,∠COD=60°.
(1)如图1,当∠COD在∠AOB的内部时,若∠AOD=95°,求∠BOC的度数;
(2)如图2,当射线OC在∠AOB的内部,OD在∠AOB的外部时,试探索∠AOD与∠BOC的数量关系,并说明理由;
(3)如图3,当∠COD在∠AOB的外部时,分别在∠AOC内部和∠BOD内部画射线OE,OF,使∠AOE =∠AOC,∠DOF=∠BOD,求∠EOF的度数.
15.如图所示,已知直角三角板和直角三角板,,.将两块三角板摆放在一起,且点重合.过点作射线、,且,.
(1)按图1所示位置摆放,则______;
(2)按图2所示位置摆放,求的值;
(3)按图3所示位置摆放,且,求的值.
期末考试压轴题训练(一)
1.已知∠AOB=30°,∠BOC=45°,则∠AOC等于( )
A.15°B.75°C.15°或75°D.不能确定
【答案】C
【详解】如图:
当∠AOB在∠BOC的内部时,∠AOC=∠BOC–∠AOB=45°–30°=15°;
当∠AOB在∠BOC的外部时,∠AOC=∠BOC+∠AOB=45°+30°=75°.故选C.
2.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.
方案一:第一次降价10%,第二次降价30%;
方案二:第一次降价20%,第二次降价15%;
方案三:第一、二次降价均为20%.三种方案哪种降价最多( )
A.方案一B.方案二C.方案三D.不能确定
【答案】A
【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;
方案二降价0.2m+m(1-20%)15%=0.32m; 方案三降价0.2m+m(1-20%)20%=0.36m;
故答案为A.
3.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2019次相遇在哪条边上?( )
A.ADB.DCC.BCD.AB
【答案】C
【详解】解:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为,把正方形的每一条边平均分成2份,由题意知:
①第一次相遇甲乙行的路程和为2a,乙行的路程为,甲行的路程为,在AD边的中点相遇;
②第二次相遇甲乙行的路程和为4a,乙行的路程为,甲行的路程为,在CD边的中点相遇;
③第三次相遇甲乙行的路程和为4a,乙行的路程为,甲行的路程为,在BC边的中点相遇;
④第四次相遇甲乙行的路程和为4a,乙行的路程为,甲行的路程为,在AB边的中点相遇;
⑤第五次相遇甲乙行的路程和为4a,乙行的路程为,甲行的路程为,在AD边的中点相遇;
……
四次一个循环,因为,所以它们第2019次相遇在边BC中点上.
故选择C.
4.观察下列一组图形,第①个图形有3个小圆圈,第②个图形有5个小圆圈,第③个图形有9个小圆圈,第④个图形有15个小圆圈,…,按此规律排列下去,第9个图形中小圆圈的个数为( )
A.59B.75C.81D.93
【答案】B
【详解】解:根据第②个图形有3+1×2=5个小圆圈,第③个图形有3+2×3=9个小圆圈,第④个图形有3+3×4=15个小圆圈,…,按此规律排列下去,第9个图形中小圆圈的个数为3+8×9=75,
故选:B.
5.计算的结果是( )
A.B.C.D.
【答案】D
【详解】解:,
=
=,
=,
=,
故选:D.
6.若,,且的绝对值与相反数相等,则的值是( )
A.B.C.或D.2或6
【答案】C
【详解】解:∵,,
∴,,
∵的绝对值与相反数相等,
∴<0,
∴,,
或,
故选:C.
7.若多项式(m为常数)不含项,则____________.
【答案】7
【详解】解:
=
∵多项式中不含xy项
∴7-m=0
∴m=7
故答案为:7.
8.已知,,都是不等于0的有理数,且的最大值是,最小值是,则______.
【答案】0
【详解】解:当a,b,c为正数时,有最大值是3,
∴m=3,
当a,b,c为负数时,的最小值是-3,
∴n=-3.
∴m+n=3-3=0.
故答案为:0.
9.如图,在数轴上,点表示1,现将点沿数轴做如下移动:第一次将点向左移动3个单位长度到达点,第2次将点向右平移6个单位长度到达点,第3次将点向左移动9个单位长度到达点…,则第2020次移动到点时,在数轴上对应的实数是_________.
【答案】3031
【详解】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1-3=-2;
第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为-2+6=4;
第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4-9=-5;
第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为-5+12=7;
第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7-15=-8;
第6次从点A5向左移动18个单位长度至点A6,则A6表示的数为-8+18=10;
…;
发现序号是偶数的点在正半轴上,
A2:4,
A4:7=4+3×1,
A6:10=4+3×2,
A2n:4+3×(n-1),
则点A2020表示:4+3×1009=3031,
故答案为:3031.
10.如图,数轴上的O点为原点,A点表示的数为,动点P从O点出发,按以下规律跳动:第1次从O点跳动到OA的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处,…,第n次从点跳动到的中点处,按照这样的规律继续跳动到点,,,…,(,n是整数)处,那么点所表示的数为_________.
【答案】
【详解】解:∵A表示的数是,
∴
∵是AO的中点,
∴,
同理,,…,,
∴,
∵在负半轴,
∴点所表示的数是.
故答案是:.
11.已知关于x的方程的解为正整数,则整数k的值为_________.
【答案】3或7.
【详解】解:,
解得,,
∵k为整数,关于x的方程的解为正整数,
∴k-2=1或k-2=5,
解得,k=3或k=7,
故答案为:3或7.
12.如图一,已知数轴上,点表示的数为,点表示的数为,动点从出发,以个单位每秒的速度沿射线的方向向右运动,运动时间为秒
(1)线段__________.
(2)当点运动到的延长线时_________.(用含的代数式表示)
(3)如图二,当秒时,点是的中点,点是的中点,求此时的长度.
(4)当点从出发时,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,
①点表示的数为:_________(用含的代数式表示),
点表示的数为:__________(用含的代数式表示).
②存在这样的值,使、、三点有一点恰好是以另外两点为端点的线段的中点,请直接写出值.______________.
【答案】(1);(2);(3);(4)①; ②秒或秒或秒
【解析】(1)
解:∵在数轴上,点A表示的数为-6,点B表示的数为8,
∴.
故答案为:14
(2)
∵在数轴上,点表示的数为,点表示的数为,动点从点出发时,以个单位每秒的速度沿射线的方向向右运动,运动时间为秒,
∴,
∴.
故答案为:
(3)
∵点表示的数为,点表示的数为,动点从点出发时,以个单位每秒的速度沿射线的方向向右运动,
当秒时,,
∴,
又∵点是的中点,点是的中点,
∴,,
∴.
∴此时的长度为.
(4)
①设运动时间为,当点从点出发时,以个单位每秒的速度沿射线的方向向右运动,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,
∴,,
∴点所表示的数为:,点所表示的数为:,
故答案为:;
②结合①的结论和点所表示的数,可知:
点表示的数为,点所表示的数为:,点所表示的数为:,
分以下三种情况:
若点为中点,则,
∴,
解得:;
若点为中点,则,
∴,
解得:;
若点为中点,则,
∴,
解得:.
综上所述,当为秒或秒或秒时,、、三点中有一点恰好是以另外两点为端点的线段的中点.
13.数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!
(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.
①如果点A所表示的数是,那么点B所表示的数是_______;
②在图1中标出原点O的位置;
(2)图2是小敏所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.
根据小敏提供的信息,标出隐藏的原点O的位置,并写出此时点C所表示的数是____________;
(3)如图3,数轴上标出若干个点,其中点A,B,C所表示的数分别为a,b,c.若数轴上标出的若干个点中每相邻两点相距1个单位(如AB=1),且.
①试求a的值;
②若点D也在这条数轴上,且CD=2,求出点D所表示的数.
【答案】(1)①5;②数轴见解析
(2)数轴见解析,点C表示的数是3
(3)①-2;②d=2或d=6
【详解】(1)解:①点A所表示的数是-5,点A、点B所表示的数互为相反数,所以点B所表示的数是5,故答案为:5;②在图1中表示原点O的位置如图所示:
(2)原点O的位置如图所示,点C所表示的数是3.故答案为:3;
(3)解:①由题意得:AC=6,所以c-a=6,又因为c-2a=8,所以a=-2;②设D表示的数为d,因为c-a=6,a=-2,所以c=4,因为CD=2,所以c-d=2或d-c=2,所以d=2或d=6.
14.已知∠AOB=120°,∠COD=60°.
(1)如图1,当∠COD在∠AOB的内部时,若∠AOD=95°,求∠BOC的度数;
(2)如图2,当射线OC在∠AOB的内部,OD在∠AOB的外部时,试探索∠AOD与∠BOC的数量关系,并说明理由;
(3)如图3,当∠COD在∠AOB的外部时,分别在∠AOC内部和∠BOD内部画射线OE,OF,使∠AOE =∠AOC,∠DOF=∠BOD,求∠EOF的度数.
【答案】(1)85°
(2)与互补,理由见解析
(3)当或时,;当时,;当或时,或
【解析】(1)解:∵,,∴,
∵,∴;
(2)与互补;理由如下:
∵,,
∴,∴与互补.
(3)解:设,①当时,如图3,
,,
∵,∴,
∵,∴,
∴, ∴;
②当时,如图,点在的延长线上,
则,,,
∴,,
此时与或重合,
当与重合时,,
当与重合时,,
③当时,如图,
,,
∵,,
,∴;
④当时,如图,点在的延长线上,
则,,∴,此时与或重合,
当与重合时,,当与重合时,;
⑤当时,如图,,,
∵,,,
∴,
综上:当或时,;
当时,;
当或时,或.
15.如图所示,已知直角三角板和直角三角板,,.将两块三角板摆放在一起,且点重合.过点作射线、,且,.
(1)按图1所示位置摆放,则______;
(2)按图2所示位置摆放,求的值;
(3)按图3所示位置摆放,且,求的值.
【答案】(1)40°;(2)40°;(3).
【详解】解:(1)∵,
∴,
∴,
∵,
∴,
∴,
∴,
故答案是:40°;
(2)∵,,,
∴,
∵,,,
∴,
∴;
(3)设,则,
,
∵,
∴,
∴,即,
∴,解得,
∴,,
∴.
人教版八年级数学上册同步精品压轴题期末考试压轴题考点训练1(学生版+解析): 这是一份人教版八年级数学上册同步精品压轴题期末考试压轴题考点训练1(学生版+解析),共23页。试卷主要包含了如图,点在线段上,于,于等内容,欢迎下载使用。
人教版八年级数学上册同步精品压轴题期末考试压轴题考点训练1(学生版+解析): 这是一份人教版八年级数学上册同步精品压轴题期末考试压轴题考点训练1(学生版+解析),共23页。试卷主要包含了如图,点在线段上,于,于等内容,欢迎下载使用。
人教版七年级数学上册同步压轴题期末考试压轴题训练3(学生版+解析): 这是一份人教版七年级数学上册同步压轴题期末考试压轴题训练3(学生版+解析),共24页。试卷主要包含了已知,问题探索,先化简,再求值等内容,欢迎下载使用。