2024年陕西省中考数学模拟试卷10
展开
这是一份2024年陕西省中考数学模拟试卷10,共31页。试卷主要包含了﹣8的立方根是,下面几何体的俯视图是,7和0等内容,欢迎下载使用。
一.选择题(共 10 小题,每小题 3 分,计 30 分.每小题只有一个选项是符合题意的)
1.﹣8的立方根是( )
A.±2B.2C.﹣2D.不存在
2.下面几何体的俯视图是( )
A. B。 C. D.
3.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )
A.2B.3C.4D.6
4.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字﹣1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( )
A.14B.13C.12D.34
5.不等式组3(x−2)≤x−43x>2x−1的解集在数轴上表示正确的是( )
A. B.
C. D.
6.为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:
则本次调查中阅读时间的中位数和众数分别是
A.0.7和0.7B.0.9和0.7C.1和0.7D.0.9和1.1
7.如图,在中,,,点是边上任意一点,过点作交于点,则的度数是( ).
B.
C.D.
8.已知是一元二次方程的一个根,则的值为( )
A.-1或2B.-1C.2D.0
9.)如图,已知点是菱形的对角线延长线上一点,过点分别作、延长线的垂线,垂足分别为点、.若,,则的值为( )
B.
C.2D.
10.二次函数的图象如图所示,则下列结论中不正确的是( )
A. B.函数的最大值为
C.当-3≦x≦1时,y≧0 D.
第Ⅱ卷(非选择题共 90 分)
二.填空题(共 6 小题,每小题 3 分,计 18 分)
11.计算的结果为________.
12.因式分解:xyy2=_____.
13.已知一个正多边形的一个外角为36°,则这个正多边形有 条边.
14.如图,将边长为1的正方形绕点顺时针旋转到的位置,则阴影部分的面积是______________;
(14题图) (15题图)
15.已知点A(−2,m)在一个反比例函数的图象上,点A′与点A关于y轴对称.若点A′在正比例函数的图象上,则这个反比例函数的表达式为_______.
16.如图,AB是的直径,弦于点E,,则的度数为 .
三.解答题(共 9 小题,计 72 分.解答应写出过程)
17.先化简,再求值:,其中.
18.如图,点D、E分别是AB、AC的中点,BE、CD相交于点O,∠B=∠C,BD=CE.求证:
(1)OD=OE;
(2)△ABE≌△ACD.
19.某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).
根据调查结果,绘制出如下的统计图①和图②.
请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的家庭个数为________,图①中m的值为_______;
(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.
20.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为时,标准视力表中最大的“”字高度为,当测试距离为时,求最大的“”字高度。
某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.
(1)求y关于x的函数解析式;
(2)某农户一次购买玉米种子30千克,需付款多少元?
22.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B
C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
23.如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
(1)求证:CD是⊙O的切线;
(2)若AD=8,BECE=12,求CD的长.
24.若一次函数的图象与轴,轴分别交于A,C两点,点B的坐标为,二次函数的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作轴交抛物线于点D,点E在抛物线上(轴左侧),若恰好平分.求直线的表达式;
(3)如图(2),若点P在抛物线上(点P在轴右侧),连接交于点F,连接,.①当时,求点P的坐标;②求的最大值.
25.问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使:∠BPC=90°,求满足条件的点P到点A的距离;
问题解决:
(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
2024 年陕西省中考模拟试卷
一.选择题(共 10 小题,每小题 3 分,计 30 分.每小题只有一个选项是符合题意的)
1.﹣8的立方根是( )
A.±2B.2C.﹣2D.不存在
【答案】C
【分析】根据立方根的定义进行解答.
【详解】∵(﹣2)3=﹣8,
∴﹣8的立方根是﹣2,
故选:C.
【点睛】本题主要考查了立方根,解决本题的关键是数积立方根的定义.
2.下面几何体的俯视图是( )
A.B.C.D.
【答案】B
【分析】俯视图是从物体的上面看得到的视图.
【详解】圆台的俯视图是一个同心圆环.
故选:B.
【点睛】本题考查几何体的三视图,主要考查学生空间想象能力及对立体图形的认知能力.
3.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )
A.2B.3C.4D.6
【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.
【解析】在y=x+3中,令y=0,得x=﹣3,
解y=x+3y=−2x得,x=−1y=2,
∴A(﹣3,0),B(﹣1,2),
∴△AOB的面积=12×3×2=3,
故选:B.
4.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字﹣1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( )
A.14B.13C.12D.34
【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【解析】根据题意可得:在4个小球中,其中标有正数的有2个,分别是2,3,
故从中随机地摸取一个小球,则这个小球所标数字是正数的概率为:24=12.
故选:C.
5.不等式组3(x−2)≤x−43x>2x−1的解集在数轴上表示正确的是( )
A.
B.
C.
D.
【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.
【解析】3(x−2)≤x−4①3x>2x−1②,
由①得x≤1;
由②得x>﹣1;
故不等式组的解集为﹣1<x≤1,
在数轴上表示出来为:.
故选:C.
6.为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:
则本次调查中阅读时间的中位数和众数分别是
A.0.7和0.7B.0.9和0.7C.1和0.7D.0.9和1.1
【答案】B
【解析】由表格可得,30名学生平均每天阅读时间的中位数是:=0.9,
30名学生平均每天阅读时间的众数是0.7,故选B.
【名师点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.
7.如图,在中,,,点是边上任意一点,过点作交于点,则的度数是( ).
A.B.C.D.
【答案】B
【解析】
【分析】
根据等腰三角形的性质可得∠B=∠C,进而可根据三角形的内角和定理求出∠A的度数,然后根据平行线的性质可得∠DEC=∠A,进一步即可求出结果.
【详解】
解:∵,,
∴∠B=∠C=65°,
∴∠A=180°-∠B-∠C=50°,
∵DF∥AB,
∴∠DEC=∠A=50°,
∴∠FEC=130°.
故选:B.
【点睛】
本题考查了等腰三角形的性质、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题的关键.
8.已知是一元二次方程的一个根,则的值为( )
A.-1或2B.-1C.2D.0
【答案】B
【解析】
【分析】
首先把x=1代入,解方程可得m1=2,m2=-1,再结合一元二次方程定义可得m的值
【详解】
解:把x=1代入得:
=0,
,
解得:m1=2,m2=﹣1
∵是一元二次方程,
∴ ,
∴,
∴,
故选:B.
【点睛】
此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于0.
9.)如图,已知点是菱形的对角线延长线上一点,过点分别作、延长线的垂线,垂足分别为点、.若,,则的值为( )
A.B.C.2D.
【答案】B
【分析】
根据菱形的基性质,得到∠PAE=30°,,利用勾股理求出AC=,则AP= +PC,PE=AP=+PC ,由∠PCF=∠DCA=30°,得到PF=PC ,最后算出结果.
【详解】
解:∵四边形ABCD是菱形且∠ABC=120°,AB=2,
∴AB=BC=CD=DA=2,∠BAD=60°,AC⊥BD,
∴∠CAE=30︒,
∵AC⊥BD,∠CAE=30°,AD=2,
∴AC=,
∴AP=+PC,
在直角△AEP中,
∵∠PAE=30°,AP=+PC,
∴PE=AP=+PC,
在直角△PFC中,
∵∠PCF=30°,
∴PF=PC,
∴=+PC-PC=,
故选:B.
【点睛】
本题主要考查了菱形的基本性质、勾股定理的应用以及在直角三角形中,30°角所对的直角边等于斜边的一半,关键会在直角三角形中应用30°.
10.)二次函数的图象如图所示,则下列结论中不正确的是( )
A.B.函数的最大值为
C.当-3≦x≦1时,y≧0 D.
【答案】D
【分析】
根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项.
【详解】
解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=-1,
∴,即b=2a,则b<0,
∵抛物线与y轴交于正半轴,
∴c>0,
则abc>0,故A正确;
当x=-1时,y取最大值为,故B正确;
由于开口向上,对称轴为直线x=-1,
则点(1,0)关于直线x=-1对称的点为(-3,0),
即抛物线与x轴交于(1,0),(-3,0),
∴当时,,故C正确;
由图像可知:当x=-2时,y>0,
即,故D错误;
故选D.
【点睛】
本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).
第Ⅱ卷(非选择题共 90 分)
二.填空题(共 6 小题,每小题 3 分,计 18 分)
11.计算的结果为________.
【答案】
【分析】直接利用积的乘方运算法则计算即可求得答案.
【详解】解:
故答案为:.
【点睛】本题考查了积的乘方运算,解题的关键是熟练掌握运算法则.
12.因式分解:xyy2=_____.
【答案】y(x-y)
【分析】
根据提取公因式法,即可分解因式.
【详解】
解:原式= y(x-y),
故答案是:y(x-y).
【点睛】
本题主要考查分解因式,掌握提取公因式法分解因式,是解题的关键.
13.13.已知一个正多边形的一个外角为36°,则这个正多边形有 条边
【答案】:10
【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.
【解析】360°÷36°=10,所以这个正多边形是正十边形.
14.如图,将边长为1的正方形绕点顺时针旋转到的位置,则阴影部分的面积是______________;
【答案】
【分析】
交于点,连接;根据全等三角形性质,通过证明,得;结合旋转的性质,得;根据三角函数的性质计算,得,结合正方形和三角形面积关系计算,即可得到答案.
【详解】
解:如图,交于点,连接
根据题意,得:,
∵
∴
∴
∵正方形绕点顺时针旋转到
∴,
∴
∴
∴
∴
∴
∴阴影部分的面积
故答案为:.
【点睛】
本题考查了正方形、全等三角形、旋转、三角函数的知识;解题的关键是熟练掌握正方形、全等三角形、旋转、三角函数的性质,从而完成求解.
15.已知点A(−2,m)在一个反比例函数的图象上,点A′与点A关于y轴对称.若点A′在正比例函数的图象上,则这个反比例函数的表达式为_______.
【答案】y=
【分析】根据点A与点A′关于y轴对称,得到A′(2,m),由点A′在正比例函数的图象上,求得m的值,再利用待定系数法求解即可.
【详解】解:∵点A与点A′关于y轴对称,且A(−2,m),
∴A′(2,m),
∵点A′在正比例函数的图象上,
∴m=×2,
解得:m=1,
∴A(−2,1),
设这个反比例函数的表达式为y=,
∵A(−2,1) 在这个反比例函数的图象上,
∴k=-2×1=-2,
∴这个反比例函数的表达式为y=,
故答案为:y=.
【点睛】本题考查反比例函数图象上点的坐标特征、关于x轴、y轴对称的点的坐标特征,解答本题的关键是明确题意,求出m的值.
16.如图,AB是的直径,弦于点E,,则的度数为 .
【答案】
【分析】
连接OD,根据垂径定理得CD=2DE,从而得是等腰直角三角形,根据圆周角定理即可求解.
【详解】
解:连接OD,
∵AB是的直径,弦于点E,
∴CD=2DE,
∵,
∴DE=OE,
∴是等腰直角三角形,即∠BOD=45°,
∴=∠BOD=22.5°,
【点睛】
本题主要考查圆的基本性质,熟练掌握垂径定理和圆周角定理,是解题的关键.
三.解答题(共 9 小题,计 72 分.解答应写出过程)
[来源: ZXXK]
(本题满分 5 分)
先化简,再求值:,其中.
【答案】,
【分析】
先根据平方差公式和单项式乘以多项式进行计算,再合并同类项,最后代入求出答案即可.
【详解】
解:
,
当时,原式.
【点睛】
本题考查了平方差公式,单项式乘以多项式,合并同类项,运用平方差公式是解题的关键.
18.如图,点D、E分别是AB、AC的中点,BE、CD相交于点O,∠B=∠C,BD=CE.求证:
(1)OD=OE;
(2)△ABE≌△ACD.
【答案】(1)证明见解析;(2)证明见解析.
【分析】
(1)根据∠B=∠C,∠DOB=∠EOC,BD=CE可以用“AAS”证明△DOB≌△EOC,再由全等三角形的性质,即可得到OD=OE;
(2)根据D、E分别是AB、AC的中点,可以得到AB=2BD,AC=2CE,AD=BD,AE=EC,再根据BD=CE,即可得到AB=AC,AD=AE,再由∠A=∠A即可用“SAS”证明两个三角形全等.
【详解】
解:(1)∵∠B=∠C,∠DOB=∠EOC,BD=CE
∴△DOB≌△EOC(AAS)
∴OD=OE;
(2)∵D、E分别是AB、AC的中点
∴AB=2BD,AC=2CE,AD=BD,AE=EC
又∵BD=CE
∴AB=AC,AD=AE
∵∠A=∠A
∴△ABE≌△ACD(SAS)
【点睛】
本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
19.某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).
根据调查结果,绘制出如下的统计图①和图②.
请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的家庭个数为________,图①中m的值为_______;
(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.
【答案】(Ⅰ)50,20;(Ⅱ)这组数据的平均数是5.9;众数为6;中位数为6.
【分析】
(Ⅰ)利用用水量为5t的家庭个数除以其所占百分比即可求出本次接受调查的家庭个数;利用用水量为6.5t的家庭个数除以本次接受调查的家庭个数即得出其所占百分比,即得出m的值.
(Ⅱ)根据加权平均数的公式,中位数,众数的定义即可求出结果.
【详解】
(Ⅰ)本次接受调查的家庭个数=,
由题意可知 ,
解得.
故答案为50,20.
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是5.9.
∵在这组数据中,6出现了16次,出现的次数最多,
∴这组数据的众数为6.
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是6,
即有,
∴这组数据的中位数为6.
【点睛】
本题考查条形统计图与扇形统计图相关联,加权平均数,中位数以及众数.从条形统计图与扇形统计图中找到必要的数据和信息是解答本题的关键.
20.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为时,标准视力表中最大的“”字高度为,当测试距离为时,求最大的“”字高度。
【答案】.
【分析】
根据题意,得、,结合相似三角形的性质,通过相似比计算,即可得到答案.
【解析】
根据题意,得,且
∴
∴
∴
【点睛】
本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.
21.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.
(1)求y关于x的函数解析式;
(2)某农户一次购买玉米种子30千克,需付款多少元?
【解析】(1)根据题意,得①当0≤x≤5时,y=20x;
②当x>5,y=20×0.8(x-5)+20×5=16x+20.
(2)把x=30代入y=16x+20,
∴y=16×30+20=500;
∴一次购买玉米种子30千克,需付款500元.
【分析】
(1)根据题意可以求得各段y与x之间的函数关系式;
(2)根据题意和(1)中函数关系式可以求得费用是多少元.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用一次函数的性质解答.
22.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B
C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
【答案】(1).(2)树状图见解析,八(1)班和八(2)班抽中不同歌曲的概率为.
【解析】(1)因为有A,B,C共3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为:.
(2)树状图如图所示:
共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率为=.
【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
23.如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
(1)求证:CD是⊙O的切线;
(2)若AD=8,BECE=12,求CD的长.
【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;
(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.
【解析】(1)证明:连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵CE⊥AB,
∴∠CEB=90°,
∴∠ECB+∠ABC=∠ABC+∠CAB=90°,
∴∠A=∠ECB,
∵∠BCE=∠BCD,
∴∠A=∠BCD,
∵OC=OA,
∴∠A=∠ACO,
∴∠ACO=∠BCD,
∴∠ACO+∠BCO=∠BCO+∠BCD=90°,
∴∠DCO=90°,
∴CD是⊙O的切线;
(2)解:∵∠A=∠BCE,
∴tanA=BCAC=tan∠BCE=BECE=12,
设BC=k,AC=2k,
∵∠D=∠D,∠A=∠BCD,
∴△ACD∽△CBD,
∴BCAC=CDAD=12,
∵AD=8,
∴CD=4.
【点睛】
本题主要考查了切线的判定和性质,相似三角形的判定和性质,三角函数的应用。
24.若一次函数的图象与轴,轴分别交于A,C两点,点B的坐标为,二次函数的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作轴交抛物线于点D,点E在抛物线上(轴左侧),若恰好平分.求直线的表达式;
(3)如图(2),若点P在抛物线上(点P在轴右侧),连接交于点F,连接,.
①当时,求点P的坐标;
②求的最大值.
【答案】(1);(2);(3)①点或;②
【解析】
【分析】
(1)先求的点A、C的坐标,再用待定系数法求二次函数的解析式即可;
(2)设交于点M.由可得,.再由,根据平行线的性质可得,所以.已知平分,根据角平分线的定义可得.利用AAS证得.由全等三角形的性质可得. 由此即可求得点M的坐标为(0,-1).再由,即可求得直线解析式为;
(3)①由可得.过点P作交于点N,则.根据相似三角形的性质可得.由此即可求得.设,可得.所以.由此即可得=2,解得.即可求得点或;②由①得.即.再根据二次函数的性质即可得.
【详解】
(1)解:令,得.令时,.
∴.
∵抛物线过点,
∴.
则,将代入得
解得
∴二次函数表达式为.
(2)解:设交于点M.
∵,
∴,.
∵,
∴.
∴.
∵平分,
∴.
又∵,
∴.
∴.
由条件得:.
∴.
∴.
∴.
∵,
∴直线解析式为.
(3)①,
∴.
过点P作交于点N,则.
∴.
∵,
∴.
∵直线的表达式为,
设,
∴.
∴.
∴,则,解得.
∴点或.
②由①得:.
∴.
∴有最大值,.
【点睛】
本题是二次函数综合题,主要考查了一次函数与坐标轴的交点坐标、待定系数法求二次函数及一次函数的解析式,相似三角形的判定与性质,解决第(2)问时,求得点M的坐标是关键;解决(3)①问时,作出辅助线求得是解题的关键;解决(3)②问时,构建函数模型是解决问题的关键.
25.问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使:∠BPC=90°,求满足条件的点P到点A的距离;
问题解决:
(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
【解析】(1)如图记为点D所在的位置.
(2)如图,
∵AB=4,BC=10,∴取BC的中点O,则OB>AB.
∴以点O为圆心,OB长为半径作⊙O,⊙O一定于AD相交于P1,P2两点,
连接BP1,P1C,P1O,∵∠BPC=90°,点P不能再矩形外,
∴△BPC的顶点P1或P2位置时,△BPC的面积最大,
作P1E⊥BC,垂足为E,则OE=3,
∴AP1=BE=OB-OE=5-3=2,
由对称性得AP2=8.
(3)可以,如图所示,连接BD,
∵A为BCDE的对称中心,BA=50,∠CBE=120°,
∴BD=100,∠BED=60°,
作△BDE的外接圆⊙O,则点E在优弧上,取的中点E′,连接E′B,E′D,
则E′B=E′D,且∠BE′D=60°,∴△BE′D为正三角形.
连接E′O并延长,经过点A至C′,使E′A=AC′,连接BC′,DC′,
∵E′A⊥BD,
∴四边形E′D为菱形,且∠C′BE′=120°,
作EF⊥BD,垂足为F,连接EO,则EF≤EO+OA-E′O+OA=E′A,
∴S△BDE·BD·EF·BD·E′A=S△E′BD,
∴S平行四边形BCDE≤S平行四边形BC′DE′=2S△E′BD=1002·sin60°=5000(m2),
所以符合要求的BCDE的最大面积为5000m2.
【名师点睛】本题属于四边形综合题,考查了平行四边形的判定和性质,圆周角定理,三角形的面积等知识,解题的关键是理解题意,学会添加常用辅助线,属于中考压轴题.
阅读时间/小时
0.5及以下
0.7
0.9
1.1
1.3
1.5及以上
人数
2
9
6
5
4
4
阅读时间/小时
0.5及以下
0.7
0.9
1.1
1.3
1.5及以上
人数
2
9
6
5
4
4
相关试卷
这是一份2021年陕西省咸阳市乾县中考数学模拟试卷,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战中考数理化——中考数学模拟试卷 (10)(含答案),共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2021年陕西省西安五校联考中考数学模拟试卷,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。