人教版七年级下册7.2.2用坐标表示平移优秀学案设计
展开1、掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形平移。
2、会根据图形上点的坐标的变化,来判定图形的移动过程。
【学习重点难点】
重点:掌握坐标变化与图形平移的关系。
难点:利用坐标变化与图形平移的关系解决实际问题。
【自主探究】
(一)、导引自学
1、仔细阅读第75页练习下--76页例上部份,完成下列问题。
一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)[或( , )],将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)[或( , )]。
2、仔细阅读第76页例题—77页完,归纳“点的坐标变化与图形平移”之间的关系(其中a为正数)
(1)横坐标变化,纵坐标不变:
原图形上的点(x,y)变为(x+a,y),相应的新图形就是把原图形向 平移 个单位。
原图形上的点(x,y)变为(x-a,y),相应的新图形就是把原图形向 平移 个单位。
(2)横坐标不变,纵坐标变化:
原图形上的点(x,y) 变为(x,y+a)相应的新图形就是把原图形向 平移 个单位。
原图形上的点(x,y) 变为 (x,y-a) 相应的新图形就是把原图形向 平移 个单位。
二、自我检测
1、在平面直角坐标系中,有一点P(-4,2),若将点P:
(1)向左平移2个单位长度,所得点的坐标为__;
(2)向右平移3个单位长度,所得点的坐标为_____;
(3)向下平移4个单位长度,所得点的坐标为_____;
(4)向上平移5个单位长度,所得点的坐标为____;
2、如果P、Q的坐标分别为P(-3,-5),Q(2,-5),将点P向___平移___个单位长度得到点Q;将点Q向___平移___个单位长度得到点P。
三、知新有疑:通过自学,我又知道了:
但还有困惑:
【范例解析】
例:正方形ABCD的顶点坐标分别为A(1,1),
B(3,1),C(3,3),D(1,3)
(1)在同一直角坐标系中,将正方形向左平移2个单位,画出相应的图形,并写出各点的坐标.
(2)将正方形向下平移2个单位,画出相应的图形,并写出各点的坐标.
(3)在(1)(2)中,你发现各点的横、纵坐标发生了哪些变化?
【达标测评】
1、已知点A(-5,-4),将点A先向右平移5个单位长度,再向下平移4个单位长度,得到点A’,则A’的坐标为 。
2、在△ABC中,如果A(1,1),B(-1,0),C(2,-1),现把△ABC中的A点移到点(2,2) 位置上,则点B、C的坐标分别是 , 。
3、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=_______ 。
4、如图,△ABC是△A1B1C1平移后得到的,且△ABC中任意一点P(x,y)经平移后对应点为P1(x-3,y-5)求A1、B1、C1的坐标.
【小结反思】
通过本节课的探究学习,我又有了新的收获和体验。
知识技能方面:
数学思想方法:
学习感受反思:
人教版七年级下册7.2.2用坐标表示平移导学案: 这是一份人教版七年级下册7.2.2用坐标表示平移导学案,共6页。学案主要包含了回顾旧知,新知梳理,试一试,拓展延伸等内容,欢迎下载使用。
初中数学人教版七年级下册7.2.2用坐标表示平移学案设计: 这是一份初中数学人教版七年级下册7.2.2用坐标表示平移学案设计,共7页。学案主要包含了学习目标,学习过程等内容,欢迎下载使用。
初中数学人教版七年级下册7.2.2用坐标表示平移学案设计: 这是一份初中数学人教版七年级下册7.2.2用坐标表示平移学案设计,共4页。学案主要包含了自学指导提示等内容,欢迎下载使用。