专题36 矩形的折叠中的距离或线段长度问题-中考数学重难点专项突破(全国通用)
展开在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .
图例1-1
【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.
①当点Q与点D重合时,A'的位置处于最左端,如图例1-2所示.
确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P.
图例1-2 图例1-3
由折叠性质可知,AD= A'D=5,在Rt△A'CD中,由勾股定理得,
②当点P与点B重合时,点A'的位置处于最右端,如图例1-3所示.
确定点A'的位置方法:因为在折叠过程中,A'P=AP,所以以点P为圆心,以AP长为半径画弧,与BC的交点即为点A'. 再作出∠A'PA的角平分线,与AD的交点即为点Q.
由折叠性质可知,AB= A'B=3,所以四边形AB A'Q为正方形.
所以A'C=BC-A'B=5-3=2.
综上所述,点A移动的最大距离为4-2=2.
故答案为:2.
【点睛】此类问题难度较大,主要考察学生的分析能力,作图能力。作图的依据是折叠前后线段长度不变,据此先找到点A的落点A',再根据对称轴(折痕)是对应点连线的垂直平分线,确定出折痕PQ的位置. 利用勾股定理、正方形的判定定理及其性质求得相应的线段长度.
【针对训练】
1、如图,在矩形ABCD中,AB=2,BC=4,P为边AD上一动点,连接BP,把△ABP沿BP折叠,使A落在A′处,当△A′DC为等腰三角形时,AP的长为( )
A.2B.C.2或D.2或
【解析】
【分析】
根据△A′DC为等腰三角形,分三种情况进行讨论:①A'D=A'C,②A'D=DC,③CA'=CD,分别求得AP的长,并判断是否符合题意.
【详解】
①如图,当A′D=A′C时,过A′作EF⊥AD,交DC于E,交AB于F,则EF垂直平分CD,EF垂直平分AB
∴A'A=A'B
由折叠得,AB=A'B,∠ABP=∠A'BP
∴△ABA'是等边三角形
∴∠ABP=30°
∴AP=;
②如图,当A'D=DC时,A'D=2
由折叠得,A'B=AB=2
∴A'B+A'D=2+2=4
连接BD,则Rt△ABD中,BD=
∴A'B+A'D<BD(不合题意)
故这种情况不存在;
③如图,当CD=CA'时,CA'=2
由折叠得,A'B=AB=2
∴A'B+A'C=2+2=4
∴点A'落在BC上的中点处
此时,∠ABP=∠ABA'=45°
∴AP=AB=2.
综上所述,当△A′DC为等腰三角形时,AP的长为或2.
故选C.
【点睛】
本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.
2、矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )
A.3B.C.2或3D.3或
【解析】
【分析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得x=,
∴BE=;
②当点B′落在AD边上时,如图2所示.
此时ABEB′为正方形,
∴BE=AB=3.
综上所述,BE的长为或3.
故选D.
【点睛】
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
3、如图,在矩形ABCD中,AB=3,BC=3,将△ABC沿对角线AC折叠,点B恰好落在点P处,CP与AD交于点F,连接BP交AC于点G,交AD于点E,下列结论不正确的是( )
A.PGCG=13B.△PBC是等边三角形
C.AC=2APD.S△BGC=3S△AGP
【解析】
【分析】
如图,首先运用勾股定理求出AC的长度,进而求出∠ACB=30°,此为解决该题的关键性结论;运用翻折变换的性质证明△BCP为等边三角形;运用射影定理求出线段CG、AG之间的数量关系,进而证明选项A、B、C成立,选项A不成立.
【详解】
如图,∵四边形ABCD为矩形,
∴∠ABC=90°;由勾股定理得:
AC2=AB2+BC2,而AB=3,BC=3,
∴AC=23,AB=12AC,
∴∠ACB=30°;由翻折变换的性质得:
BP⊥AC,∠ACB=∠ACP=30°,
BC=PC,AB=AP,BG=PG,
∴GC=3BG=3PG,∠BCP=60°,AC=2AP,
∴△BCP为等边三角形,
故选项B、C成立,选项A不成立;
由射影定理得:BG2=CG•AG,
∴AG=33BG,CG=3AG,
∴S△BCG=3S△ABG;由题意得:
S△ABG=S△AGP,
∴S△BGC=3S△AGP,
故选项D正确;
故选:A.
【点睛】
考查了翻折变换的性质、矩形的性质、射影定理、三角形的面积公式等几何知识点及其应用问题;解题的关键是灵活运用矩形的性质、射影定理等几何知识点来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.
4、如图,矩形中,,,点是边上一点,连接,把矩形沿折叠,使点落在点处.当为直角三角形时,的长为____________.
【解析】
【分析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.
【详解】
由题意知,需分两种情况讨论:
①当时,如图1,由折叠得,,,
∴,
∴三点共线.在矩形中,,,
∴.
∵,
∴.
设,则,,
在中,,即,解得.
②当时,如图2,由折叠可知,
∴,,
∴四边形是正方形,
∴.
综上所述,当为直角三角形时,的长为或3.
故答案是:或3.
【点睛】
考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
5、如图,矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的值为_____________.
【解析】
【分析】
由矩形的性质和已知条件,可判定,设,根据全等三角形的性质及矩形的性质可用含x的式子表示出DF和AF的长,在根据勾股定理可求出x的值,即可确定AF的值.
【详解】
解:四边形ABCD是矩形,
,,
是由沿折叠而来的
, ,
又
(AAS)
设,则
在中,根据勾股定理得:
,即
解得
故答案为:
【点睛】
本题考查了求多边形中的线段长,主要涉及的知识点有矩形的性质,全等三角形的判定与性质,勾股定理,数学的方程思想,用同一个字母表示出直角三角形中的三边长是解题的关键.
6、如图,在矩形ABCD中, AB=3,BC=2,点E为线段AB上的动点,将△CBE沿 CE折叠,使点B落在矩形内点F处,则AF的最小值为__.
【解析】
【分析】
通过观察可以发现,当∠AFE=90°时 ,AF最小;然后设BE=x,则:EF=x,AE=3-x,然后多次使用勾股定理即可解答;
【详解】
解:设BE=x,则:EF=x,AE=3-x
在Rt△ABC中,由勾股定理得:AC=
在Rt△EBC中,由勾股定理得:EC=
由折叠可知CF=CB=2
所以:AF=AC-CF=-2
故答案为:-2.
【点睛】
本题考查几何图形中的最值问题,其中找到出现最值的位置和运用勾股定理解题是关键.
7、如图,在矩形ABCD中,AB=6,AD=2,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为_____.
【解析】
【分析】
利用勾股定理求出CE,再证明CF=CE即可解决问题.(注意有两种情形)
【详解】
解:如图,由翻折可知,∠FEA=∠FEA′,
∵CD∥AB,
∴∠CFE=∠AEF,
∴∠CFE=∠CEF,
∴CE=CF,
在Rt△BCE中,EC= ,
∴CF=CE=2,
∵AB=CD=6,
∴DF=CD﹣CF=6﹣2,
当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=2,
∴DF=CD+CF′=6+2
故答案为6﹣2或6+2.
【点睛】
本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.
8、如图,矩形OABC中,OA=4,AB=3,点D在边BC上,且CD=3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为_________.
【解析】连接A′D,AD,
∵四边形OABC是矩形,
∴BC=OA=4,OC=AB=3,∠C=∠B=∠O=90°,
∵CD=3DB,
∴CD=3,BD=1,
∴CD=AB,
∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,
∴A′D=AD,A′E=AE,
在Rt△A′CD与Rt△DBA中,,
∴Rt△A′CD≌Rt△DBA(HL),
∴A′C=BD=1,
∴A′O=2,
∵A′O2+OE2=A′E2,
∴22+OE2=(4﹣OE)2,
∴OE=,
【点评】本题关键词:“对应点的连线段被折痕垂直平分”,“全等相似”,“十字架”,“勾股定理解方程”
9、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为 .
【解析】连接BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴AE==5,∴BH=,则BF=,
∵FE=BE=EC,∴∠BFC=90°,
根据勾股定理得,CF===.
故答案为:.
10、如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB= 5 .
【解析】∵折叠,
∴△ADE≌△AD'E,
∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,
∵四边形ABCD是矩形,
∴AB∥CD,
∴∠DEA=∠EAB,
∴∠EAB=∠AEB,
∴AB=BE,
∴D'B=BE﹣D'E=AB﹣1,
在Rt△ABD'中,AB2=D'A2+D'B2,
∴AB2=9+(AB﹣1)2,
∴AB=5
故答案为:5
11、如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E恰在矩形ABCD的对称轴上,则BM的长为 5或 .
【解析】①当E在矩形的对称轴直线PN上时,如图1
此时∠MEN=∠B=90°,∠ENB=90°,
∴四边形BMEN是矩形.
又∵ME=MB,
∴四边形BMEN是正方形.
∴BM=BN=5.
②当E在矩形的对称轴直线FG上时,如图2,
过N点作NH⊥FG于H点,则NH=4.
根据折叠的对称性可知EN=BN=5,
∴在Rt△ENH中,利用勾股定理求得EH=3.
∴FE=5﹣3=2.
设BM=x,则EM=x,FM=4﹣x,
在Rt△FEM中,ME2=FE2+FM2,
即x2=4+(4﹣x)2,解得x=,即BM=.
故答案为5或.
12、如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB于点E,BE=AE,把四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是 .
【解析】设⊙O与A′D′相切于点F,
连接OF,OE,
则OF⊥A′D′,
∵OC=OE,
∴∠OCE=∠OEC,
∵四边形ABCD是矩形,
∴∠A=∠B=A′=90°,
由折叠的性质得:∠AEC=∠A′EC,
∴∠B+∠BCE=∠A′EO+∠OEC,
∴∠OEA′=∠B=90°,
∵OE=OF,
∴四边形A′FOE是正方形,
∴A′E=AE=OE=OC,
∵BE=AE,
设BE=3x,AE=5x,
∴OE=OC=5x,
∵BC=AD=4,
∴OB=4﹣5x,
在RtBOE中,OE2=BE2+OB2,
∴(5x)2=(3x)2+(4﹣5x)2,解得:x=,x=4(舍去),
∴AB=8x=.故答案为:.
13、如图,矩形ABCD中,AB=2BC,E是AB上一点,O是CD上一点,以OC为半径作⊙O,将△ADE折叠至△A′DE,点A′在⊙O上,延长EA′交BC延长线于F,且恰好过点O,过点D作⊙O的切线交BC延长线于点G.若FG=1,则AD= 2 ,⊙O半径= .
【解析】作OH⊥DG于H,如图,设DA=x,则AB=2x,
∵△ADE折叠至△A′DE,
∴DA′=DA=x,∠DA′E=∠A=90°,
∴DA′与⊙O相切,
在△ODA′和△OCF中
∴△DOA′≌△FOC.
∴DA′=CF=x,
∵DG是⊙O的切线,OH⊥DG,
∴H点为切点,
∴DH=DA′=x,GH=GC=CF+GF=x+1,
在Rt△DCG中,∵DC2+CG2=DG2,
∴(2x)2+(x+1)2=(x+x+1)2,解得x1=0(舍去),x2=2,
∴AD=2,
设⊙O的半径为r,则OC=OA′=r,OD=2x﹣r=4﹣r,
在Rt△DOA′中,∵DA′2+OA′2=DO2,
∴22+r2=(4﹣r)2,解得r=,
即⊙O的半径为.故答案为2,.
14、在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.
(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为 18 °.
(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.
(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.
【解析】(1)∵四边形ABCD是矩形,
∴∠BAD=90°,
∵∠BAC=54°,
∴∠DAC=90°﹣54°=36°,
由折叠的性质得:∠DAE=∠FAE,
∴∠DAE=∠DAC=18°;故答案为:18;
(2)∵四边形ABCD是矩形,
∴∠B=∠C=90°,BC=AD=10,CD=AB=6,
由折叠的性质得:AF=AD=10,EF=ED,
∴BF===8,
∴CF=BC﹣BF=10﹣8=2,
设CE=x,则EF=ED=6﹣x,
在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;
(3)连接EG,如图3所示:
∵点E是CD的中点,∴DE=CE,
由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,
∴∠EFG=90°=∠C,
在Rt△CEG和△FEG中,,
∴Rt△CEG≌△FEG(HL),
∴CG=FG,设CG=FG=y,
则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,
在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,
即CG的长为.
专题31 面积的存在性问题-中考数学重难点专项突破(全国通用): 这是一份专题31 面积的存在性问题-中考数学重难点专项突破(全国通用),文件包含专题31面积的存在性问题原卷版docx、专题31面积的存在性问题解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
专题29 图形折叠中的直角三角形存在性问题-中考数学重难点专项突破(全国通用): 这是一份专题29 图形折叠中的直角三角形存在性问题-中考数学重难点专项突破(全国通用),文件包含专题29图形折叠中的直角三角形存在性问题原卷版docx、专题29图形折叠中的直角三角形存在性问题解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
专题40 图形折叠中的落点固定问题-2024年中考数学重难点专项突破(全国通用): 这是一份专题40 图形折叠中的落点固定问题-2024年中考数学重难点专项突破(全国通用),文件包含专题40图形折叠中的落点固定问题原卷版docx、专题40图形折叠中的落点固定问题解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。