|试卷下载
搜索
    上传资料 赚现金
    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题(原卷版).docx
    • 解析
      专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题(解析版).docx
    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)01
    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)02
    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)03
    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)01
    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)02
    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)

    展开
    这是一份专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用),文件包含专题70瓜豆原理中动点轨迹圆或圆弧型最值问题原卷版docx、专题70瓜豆原理中动点轨迹圆或圆弧型最值问题解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    【知识精讲】
    如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.
    考虑:当点P在圆O上运动时,Q点轨迹是?
    【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?
    考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
    【小结】确定Q点轨迹圆即确定其圆心与半径,
    由A、Q、P始终共线可得:A、M、O三点共线,
    由Q为AP中点可得:AM=1/2AO.
    Q点轨迹相当于是P点轨迹成比例缩放.
    根据动点之间的相对位置关系分析圆心的相对位置关系;
    根据动点之间的数量关系分析轨迹圆半径数量关系.
    如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.
    考虑:当点P在圆O上运动时,Q点轨迹是?

    【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.
    考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
    考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
    即可确定圆M位置,任意时刻均有△APO≌△AQM.
    如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?
    【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
    考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.
    即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.
    【模型总结】
    为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.
    此类问题的必要条件:两个定量
    主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
    主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
    【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:
    ∠PAQ=∠OAM;
    (2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:
    AP:AQ=AO:AM,也等于两圆半径之比.
    按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.
    古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.
    【精典例题】
    10.如图,已知,平面内点P到点O的距离为2,连接AP,若且,连接AB,BC,则线段BC的最小值为______.
    【答案】
    【分析】如图所示,延长PB到D使得PB=DB,先证明△APD是等边三角形,从而推出ABP=90°,∠BAP=30°,以AO为斜边在AC下方作Rt△AMO,使得∠MAO=30°,连接CM,过点M作MH⊥AC于H,解直角三角形得到,从而证明△AMB∽△AOP,得到,则,则点B在以M为圆心,以为半径的圆上,当M、B、C三点共线时,即点B在点的位置时,BC有最小值,据此求解即可.
    【详解】解:如图所示,延长PB到D使得PB=DB,
    ∵,
    ∴,
    又∵∠APB=60°,
    ∴△APD是等边三角形,
    ∵B为PD的中点,
    ∴AB⊥DP,即∠ABP=90°,
    ∴∠BAP=30°,
    以AO为斜边在AC下方作Rt△AMO,使得∠MAO=30°,连接CM,过点M作MH⊥AC于H,
    ∴,
    同理可得,
    ∵∠OAM=30°=∠PAB,
    ∴∠BAM=∠PAO,
    又∵,
    ∴△AMB∽△AOP,
    ∴,
    ∵点P到点O的距离为2,即OP=2,
    ∴,
    ∴点B在以M为圆心,以为半径的圆上,
    连接CM交圆M(半径为)于,
    ∴当M、B、C三点共线时,即点B在点的位置时,BC有最小值,
    ∵AC=2AO=8,
    ∴AO=4,
    ∴,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∴BC的最小值为,
    故答案为:.
    【点睛】本题主要考查了等边三角形的性质与判定,解直角三角形,相似三角形的性质与判定,勾股定理,圆外一点到圆上一点的最值问题,解题的关键在于能够熟练掌握瓜豆模型即证明点B在以M为圆心,半径为的圆上运动.
    22.如图,在矩形ABCD中,,,连接BD,将绕点D顺时针旋转,记旋转后的三角形为,旋转角为a(,且).
    (1)在旋转过程中,当落在线段BC上时,求的长;
    (2)连接、,当时,求;
    (3)在旋转过程中,若的重心为G,则CG的最小值=______.
    【答案】(1)
    (2)3
    (3)
    【分析】(1)当落在线段BC上时,如图,由题意可得,,在中,由勾股定理可求得:,继而求得的长;
    (2)由题意可得当时,点B,,D三点共线,如图,过点作,在中,由勾股定理得:,易证,由相似三角形的性质可得,继而可求得,,然后即可求得的值;
    (3)如图,分别取的中点H,N,分别连接HD,HN,CG,过点G作GM//HN,可得,HN是的中位线,继而可得,由点G是的重心和相似三角形的判定和性质,可求得,,即可确定点G的运动轨迹是以M为圆心,以为半径的圆,然后根据CG的最小值即可求得答案.
    (1)
    解:当落在线段BC上时,如图,
    ∵四边形ABCD是矩形,
    ∴,
    由旋转的性质可得:,
    在中,由勾股定理得:,
    ∴.
    (2)
    解:∵四边形ABCD是矩形,

    ∴当时,点B,,D三点共线,
    如图,过点作,
    在中,由勾股定理得:,
    ∵,
    ∴,
    ∴,
    即:,
    解得:,
    ∴,
    ∴,
    ∴;
    (3)
    解:如图,分别取的中点H,N,分别连接HD,HN,CG,
    过点G作GM//HN,
    ∴,HN是的中位线,
    ∴,
    ∵点G是的重心,
    ∴,
    ∵GM//HN,
    ∴,
    ∴,
    ∴,,
    ∴点G的运动轨迹是以M为圆心,以为半径的圆,
    当点C、G、M三点共线时,CG的值最小,
    在中,由勾股定理得:,
    ∴CG的最小值为.
    【点睛】本题是四边形综合题,主要考查了矩形的性质、勾股定理、相似三角形的判定和性质、三角形中位线的判定与性质、三角形重心的性质以及瓜豆模型求最值等,熟练掌握相关判定和性质定理以及解题方法是解题的关键.
    23.在菱形中,,是对角线上的一点,连接.
    (1)当在的中垂线上时,把射线绕点顺时针旋转后交于,连接.如图①,若,求的长.
    (2)在(1)的条件下,连接,把绕点顺时针旋转得到如图②,连接,点为的中点,连接,求的最大值.
    【答案】(1) (2)
    【分析】(1)通过菱形性质证明,在中,利用勾股定理求出AE的长度,再中,可以得到,在等腰中,利用角度推导出,代入数值求解即可.
    (2)判断出点H的运动轨迹,从而知道点N的运动轨迹,根据三角形三边关系,即可得到AN的最大值.
    【详解】(1)解:过点F作于点M,如下图:
    ∵四边形ABCD是菱形,且

    ∵为菱形对角线
    ∴,
    又∵在的中垂线上


    ∴,
    在中,

    设:,则

    即:
    解得:

    ∵,



    又∵




    (2)连接AC,延长AE交BC于点M,则有,点H的运动轨迹是以点B为圆心,BH为半径的圆,因为点C为固定点,点N为CH的中点,所以点N的运动轨迹是以点M为圆心,NM为半径的圆,如下图:
    此时:在在,,当 A、M、N三点共线时,AN最大
    则:在中,



    又∵M点是BC的中点,N是CH的中点


    【点睛】本题看考查勾股定理,等腰三角形性质.瓜豆模型等相关知识点,根据题意列出相关等量关系是解题重点.
    动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
    确定动点轨迹为圆或者圆弧型的方法:
    动点到定点的距离不变,则点的轨迹是圆或者圆弧。
    当某条边与该边所对的角是定值时,该角的顶点的轨迹是圆,具体运用如下;
    = 1 \* GB3 \* MERGEFORMAT ①见直角,找斜边,想直径,定外心,现圆形
    = 2 \* GB3 \* MERGEFORMAT ②见定角,找对边,想周角,转心角,现圆形
    相关试卷

    专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-2024年中考数学重难点专项突破(全国通用): 这是一份专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-2024年中考数学重难点专项突破(全国通用),文件包含专题70瓜豆原理中动点轨迹圆或圆弧型最值问题原卷版docx、专题70瓜豆原理中动点轨迹圆或圆弧型最值问题解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    专题69 瓜豆原理中动点轨迹直线型最值问题-2024年中考数学重难点专项突破(全国通用): 这是一份专题69 瓜豆原理中动点轨迹直线型最值问题-2024年中考数学重难点专项突破(全国通用),文件包含专题69瓜豆原理中动点轨迹直线型最值问题原卷版docx、专题69瓜豆原理中动点轨迹直线型最值问题解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    专题30 最值模型之瓜豆模型(原理)圆弧轨迹型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用): 这是一份专题30 最值模型之瓜豆模型(原理)圆弧轨迹型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用),文件包含专题30最值模型之瓜豆模型原理圆弧轨迹型原卷版docx、专题30最值模型之瓜豆模型原理圆弧轨迹型解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map