专题9.6 直线与圆锥曲线位置关系(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用)
展开【核心素养】
通过考查直线与圆锥曲线的位置关系,凸显直观想象、数学运算、逻辑推理等核心数学素养.
知识点一
直线和圆锥曲线的位置关系
判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.
即eq \b\lc\{\rc\ (\a\vs4\al\c1(Ax+By+C=0,,Fx,y=0,))消去y,得ax2+bx+c=0.
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;
Δ=0⇔直线与圆锥曲线C相切;
Δ<0⇔直线与圆锥曲线C相离.
(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.
知识点二
“弦”的问题
1.弦长公式
设斜率为k()的直线l与圆锥曲线C相交于A,B两点,,则==.
2.处理中点弦问题常用的求解方法
(1)点差法:
即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x1+x2,y1+y2,eq \f(y1-y2,x1-x2)三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.
(2)根与系数的关系:
即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解.
注意:中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.
3.抛物线的焦点弦
如图所示:AB是抛物线y2=2px(p>0)过焦点F的一条弦,设A(x1,y1)、B(x2,y2),AB的中点M(x0,y0),抛物线的准线为l.
(1)以AB为直径的圆必与准线l相切;
(2)|AB|=2(x0+eq \f(p,2))=x1+x2+p;
(3)A、B两点的横坐标之积、纵坐标之积为定值,即x1·x2=eq \f(p2,4),y1·y2=-p2.
常考题型剖析
题型一: 直线与圆锥曲线位置关系的判断
【典例分析】
例1-1.(2023·全国·高三专题练习)直线l:与椭圆C:的位置关系是( )
A.相交B.相切C.相离D.不能确定
【答案】A
【分析】判断出直线过定点,且定点在椭圆内可得答案.
【详解】将直线l:变形为l:,
由得,于是直线l过定点,
而,于是点在椭圆C:内部,
因此直线l:与椭圆C:相交.
故选:A.
例1-2.(2023·全国·高三专题练习)直线与双曲线交点的个数是( )
A.0B.1C.2D.4
【答案】B
【分析】根据已知直线和渐近线平行即可得答案.
【详解】由题知,双曲线的渐近线方程为,
所以直线与双曲线的一条渐近线平行,
由图可知,直线l与双曲线有且只有一个交点.
故选:B
【变式训练】
变式1-1.(2024·全国·高三专题练习)双曲线与直线的公共点的个数为( )
A.0B.1C.0或1D.0或1或2
【答案】C
【分析】根据已知直线和双曲线的渐近线的位置关系判断即可.
【详解】因为双曲线的渐近线方程为,
所以,当时,直线与渐近线重合,此时直线与双曲线无交点;
当时,直线与渐近线平行,此时直线与双曲线有一个交点.
故选:C
变式1-2.【多选题】(2024·全国·高三专题练习)已知直线l过定点,则与抛物线有且只有一个公共点的直线l的方程为( )
A.B.
C.D.
【答案】ABC
【分析】分斜率存在和不存在讨论,当斜率存在时分二次系数是否为0讨论可得.
【详解】(1)当过点的直线l的斜率存在时,设其方程为,
由方程组消去y得,
①若,则,解得,此时直线与抛物线只有一个交点,直线l的方程为,A正确;
②若,令,解得,此时直线与抛物线相切,只有一个交点,直线l的方程为,即,B正确.
(2)当过点的直线l的斜率不存在时,方程为,与抛物线相切,只有一个交点,C正确.
综上,直线l的方程为,或.
故选:ABC.
题型二:研究曲线的几何性质
【典例分析】
例2-1.(2021·天津·统考高考真题)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为( )
A.B.C.2D.3
【答案】A
【分析】设公共焦点为,进而可得准线为,代入双曲线及渐近线方程,结合线段长度比值可得,再由双曲线离心率公式即可得解.
【详解】设双曲线与抛物线的公共焦点为,
则抛物线的准线为,
令,则,解得,所以,
又因为双曲线的渐近线方程为,所以,
所以,即,所以,
所以双曲线的离心率.
故选:A.
例2-2.(2023秋·云南·高三校联考阶段练习)已知椭圆,点为左焦点,点为下顶点,平行于的直线交椭圆于,两点,且的中点为,则椭圆的离心率为( )
A.B.C.D.
【答案】A
【分析】点差法解决中点弦问题.
【详解】由题意,设椭圆方程为,有,,
设,,的中点为,,.
,.
由,.
两式相减得,即,
,可得:,,
化为:,解得,
,.
故选:A.
【变式训练】
变式2-1.(2023春·海南海口·高三统考期中)已知双曲线的左顶点为A,右焦点为,过点A的直线l与圆相切,与C交于另一点B,且,则C的离心率为( )
A.3B.C.2D.
【答案】A
【分析】根据给定条件,结合切线的性质及直角三角形边角关系,列式计算作答.
【详解】显然圆的圆心为,半径为,令直线l与圆相切的切点为,连接,
则,有,而,又,因此,解得,
所以双曲线C的离心率为.
故选:A
变式2-2.【多选题】(2023·广东东莞·校考三模)已知抛物线,为坐标原点,点为直线上一点,过点作抛物线的两条切线,切点分别为,,则( )
A.抛物线的准线方程为B.直线一定过抛物线的焦点
C.线段长的最小值为D.
【答案】ACD
【分析】根据抛物线的焦点坐标和准线方程,结合一元二次方程根的判别式进行判断A、B、D;联立直线与抛物线方程,根据韦达定理,结合弦长公式即可判断C.
【详解】由抛物线可知,焦点坐标为,准线方程为,故选项A正确;
设,显然直线存在斜率且不为零,设为,方程为,
与抛物线方程联立,得,
因为是该抛物线的切线,所以,即,
且的纵坐标为:,代入抛物线方程中可得的横坐标为:,
设直线存在斜率且不为零,设为,
同理可得:,且的纵坐标为:,横坐标为,
显然、是方程的两个不等实根,所以,
因为,
所以,因此选项D正确;
由上可知:的斜率为,
直线的方程为:,即,
又,所以,
所以,即,
所以直线AB一定过,显然该点不是抛物线的焦点,因此选项B不正确,
由题意知,直线AB的斜率不为0,设直线AB的方程为,,,
由得,所以,,
所以
,当且仅当时等号成立,故选项C正确;
故选:ACD
题型三:求直线方程
【典例分析】
例3-1.(2022·全国·统考高考真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为 .
【答案】
【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;
【详解】[方法一]:弦中点问题:点差法
令的中点为,设,,利用点差法得到,
设直线,,,求出、的坐标,
再根据求出、,即可得解;
解:令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,
所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
[方法二]:直线与圆锥曲线相交的常规方法
解:由题意知,点既为线段的中点又是线段MN的中点,
设,,设直线,,,
则,,,因为,所以
联立直线AB与椭圆方程得消掉y得
其中,
∴AB中点E的横坐标,又,∴
∵,,∴,又,解得m=2
所以直线,即
例3-2.(2023·天津·统考高考真题)设椭圆的左右顶点分别为,右焦点为,已知.
(1)求椭圆方程及其离心率;
(2)已知点是椭圆上一动点(不与端点重合),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.
【答案】(1)椭圆的方程为,离心率为.
(2).
【分析】(1)由解得,从而求出,代入椭圆方程即可求方程,再代入离心率公式即求离心率.
(2)先设直线的方程,与椭圆方程联立,消去,再由韦达定理可得,从而得到点和点坐标.由得,即可得到关于的方程,解出,代入直线的方程即可得到答案.
【详解】(1)如图,
由题意得,解得,所以,
所以椭圆的方程为,离心率为.
(2)由题意得,直线斜率存在,由椭圆的方程为可得,
设直线的方程为,
联立方程组,消去整理得:,
由韦达定理得,所以,
所以,.
所以,,,
所以,
所以,即,
解得,所以直线的方程为.
【变式训练】
变式3-1.(2021·天津·统考高考真题)已知椭圆的右焦点为,上顶点为,离心率为,且.
(1)求椭圆的方程;
(2)直线与椭圆有唯一的公共点,与轴的正半轴交于点,过与垂直的直线交轴于点.若,求直线的方程.
【答案】(1);(2).
【分析】(1)求出的值,结合的值可得出的值,进而可得出椭圆的方程;
(2)设点,分析出直线的方程为,求出点的坐标,根据可得出,求出、的值,即可得出直线的方程.
【详解】(1)易知点、,故,
因为椭圆的离心率为,故,,
因此,椭圆的方程为;
(2)设点为椭圆上一点,
先证明直线的方程为,
联立,消去并整理得,,
因此,椭圆在点处的切线方程为.
在直线的方程中,令,可得,由题意可知,即点,
直线的斜率为,所以,直线的方程为,
在直线的方程中,令,可得,即点,
因为,则,即,整理可得,
所以,,因为,,故,,
所以,直线的方程为,即.
变式3-2.(2022·全国·统考高考真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
【答案】(1);
(2).
【分析】(1)由抛物线的定义可得,即可得解;
(2)法一:设点的坐标及直线,由韦达定理及斜率公式可得,再由差角的正切公式及基本不等式可得,设直线,结合韦达定理可解.
【详解】(1)抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
此时,所以,
所以抛物线C的方程为;
(2)[方法一]:【最优解】直线方程横截式
设,直线,
由可得,,
由斜率公式可得,,
直线,代入抛物线方程可得,
,所以,同理可得,
所以
又因为直线MN、AB的倾斜角分别为,所以,
若要使最大,则,设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,
,所以,
所以直线.
[方法二]:直线方程点斜式
由题可知,直线MN的斜率存在.
设,直线
由 得:,,同理,.
直线MD:,代入抛物线方程可得:,同理,.
代入抛物线方程可得:,所以,同理可得,
由斜率公式可得:
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,,所以,所以直线.
[方法三]:三点共线
设,
设,若 P、M、N三点共线,由
所以,化简得,
反之,若,可得MN过定点
因此,由M、N、F三点共线,得,
由M、D、A三点共线,得,
由N、D、B三点共线,得,
则,AB过定点(4,0)
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,所以直线.
题型四: 求曲线方程
【典例分析】
例4-1.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)已知双曲线与直线有唯一的公共点,过点且与垂直的直线分别交轴、轴于两点.当点运动时,点的轨迹方程是( )
A.B.
C.D.
【答案】D
【分析】根据直线与双曲线相切,推出,,再求出,消去可得结果.
【详解】因为双曲线与直线有唯一的公共点,
所以直线与双曲线相切,
联立,消去并整理得,
所以,即,
将代入,得,
得,因为,,所以,
所以,,即,
由可知,
所以过点且与垂直的直线为,
令,得,令,得,
则,,
由,得,,
代入,得,即,
故选:D
例4-2.(2023·全国·模拟预测)已知双曲线的左、右焦点分别为,,A为双曲线C左支上一点,.
(1)求双曲线C的离心率;
(2)设点A关于x轴的对称点为B,D为双曲线C右支上一点,直线与x轴交点的横坐标分别为,且,求双曲线C的方程.
【答案】(1)
(2).
【分析】(1)利用双曲线定义结合条件中等式,即可求得答案;
(2)设,,,从而表示出直线的方程,继而求得的表达式,利用即可求得a的值,即得答案.
【详解】(1)由于A为双曲线C左支上一点,
由双曲线的定义可知,
所以.
整理,得,所以,
所以双曲线C的离心率为.
(2)由(1)可设双曲线C的标准方程为.
设,,.
直线AD的方程为.
令,则.
直线BD的方程为,
令,则.
所以.
因为,满足方程,
所以,,
所以,
所以双曲线C的方程为.
【变式训练】
变式4-1.(2023·全国·高三专题练习)已知椭圆G:,斜率为的直线l交椭圆于A,B两点.若AB的中点坐标为,试写出椭圆G的一个标准方程 .
【答案】(答案不唯一)
【分析】设点,,利用点差法可得答案.
【详解】设点,,
则,
两个等式作差得,
整理可得,
因为线段AB的中点为,
可得,
又,
所以,
所以,故可设,
此时椭圆G的方程为.
故答案为:.(答案不唯一)
变式4-2.(2023秋·江西南昌·高三南昌市外国语学校校考阶段练习)已知拋物线,过其焦点作两条相互垂直且不平行于轴的直线,分别交抛物线于点和点的中点分别为.
(1)若直线的斜率为2,求直线的方程;
(2)求线段的中点的轨迹方程.
【答案】(1)
(2)
【分析】(1)联立直线和抛物线方程,求得中点坐标,即可求解直线的方程;
(2)首先设直线的方程为,与抛物线方程联立,求得点的坐标,并利用直线与直线的关系,求得点的坐标,即可求解点,再通过消参求得点的轨迹方程.
【详解】(1)抛物线的焦点,,
直线的方程为,设,
联立,得,,
所以中点的横坐标为,中点的纵坐标为,即,
直线的方程为,设,
联立,得,,
所以中点的横坐标为,中点的纵坐标为,即,
所以,直线的方程为,
化简为直线的方程为;
(2)设直线的方程为,设,,
联立,得,
得,
所以中点的横坐标为,纵坐标为,
即,将换成得,
得的中点的坐标为,
即,得.
题型五: 求参数
【典例分析】
例5-1.(2023·天津·统考高考真题)过原点的一条直线与圆相切,交曲线于点,若,则的值为 .
【答案】
【分析】根据圆和曲线关于轴对称,不妨设切线方程为,,即可根据直线与圆的位置关系,直线与抛物线的位置关系解出.
【详解】易知圆和曲线关于轴对称,不妨设切线方程为,,
所以,解得:,由解得:或,
所以,解得:.
当时,同理可得.
故答案为:.
例5-2.(2022·北京·统考高考真题)已知椭圆的一个顶点为,焦距为.
(1)求椭圆E的方程;
(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.
【答案】(1)
(2)
【分析】(1)依题意可得,即可求出,从而求出椭圆方程;
(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;
【详解】(1)解:依题意可得,,又,
所以,所以椭圆方程为;
(2)解:依题意过点的直线为,设、,不妨令,
由,消去整理得,
所以,解得,
所以,,
直线的方程为,令,解得,
直线的方程为,令,解得,
所以
,
所以,
即
即
即
整理得,解得
【变式训练】
变式5-1.(2023·全国·高二专题练习)已知直线:与椭圆:有公共点,则的取值范围是( )
A.B.C.D.
【答案】B
【分析】联立直线与椭圆的方程,令判别式大于0求解即可.
【详解】将直线的方程与椭圆的方程联立,得,消去得①,
因为直线与椭圆有公共点,所以方程①有实数根,则,得.
故选:B.
变式5-2.(2023·全国·统考高考真题)已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).
A.B.C.D.
【答案】C
【分析】首先联立直线方程与椭圆方程,利用,求出范围,再根据三角形面积比得到关于的方程,解出即可.
【详解】将直线与椭圆联立,消去可得,
因为直线与椭圆相交于点,则,解得,
设到的距离到距离,易知,
则,,
,解得或(舍去),
故选:C.
题型六: 长度、距离问题
【典例分析】
例6-1.【多选题】(2022·全国·统考高考真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为B.直线AB与C相切
C.D.
【答案】BCD
【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.
【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
,所以直线的方程为,
联立,可得,解得,故B正确;
设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
所以,直线的斜率存在,设其方程为,,
联立,得,
所以,所以或,,
又,,
所以,故C正确;
因为,,
所以,而,故D正确.
故选:BCD
例6-2.(2023·全国·统考高考真题)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
(1)求的方程;
(2)已知矩形有三个顶点在上,证明:矩形的周长大于.
【答案】(1)
(2)见解析
【分析】(1)设,根据题意列出方程,化简即可;
(2)法一:设矩形的三个顶点,且,分别令,,且,利用放缩法得,设函数,利用导数求出其最小值,则得的最小值,再排除边界值即可.
法二:设直线的方程为,将其与抛物线方程联立,再利用弦长公式和放缩法得,利用换元法和求导即可求出周长最值,再排除边界值即可.
法三:利用平移坐标系法,再设点,利用三角换元再对角度分类讨论,结合基本不等式即可证明.
【详解】(1)设,则,两边同平方化简得,
故.
(2)法一:设矩形的三个顶点在上,且,易知矩形四条边所在直线的斜率均存在,且不为0,
则,令,
同理令,且,则,
设矩形周长为,由对称性不妨设,,
则.,易知
则令,
令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
故,即.
当时,,且,即时等号成立,矛盾,故,
得证.
法二:不妨设在上,且,
依题意可设,易知直线,的斜率均存在且不为0,
则设,的斜率分别为和,由对称性,不妨设,
直线的方程为,
则联立得,
,则
则,
同理,
令,则,设,
则,令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
,
但,此处取等条件为,与最终取等时不一致,故.
法三:为了计算方便,我们将抛物线向下移动个单位得抛物线,
矩形变换为矩形,则问题等价于矩形的周长大于.
设 , 根据对称性不妨设 .
则 , 由于 , 则 .
由于 , 且 介于 之间,
则 . 令 ,
,则,从而
故
①当时,
②当 时,由于,从而,
从而又,
故,由此
,
当且仅当时等号成立,故,故矩形周长大于.
.
【点睛】关键点睛:本题的第二个的关键是通过放缩得,同时为了简便运算,对右边的式子平方后再设新函数求导,最后再排除边界值即可.
【变式训练】
变式6-1.(2020·海南·高考真题)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则= .
【答案】
【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.
【详解】∵抛物线的方程为,∴抛物线的焦点F坐标为,
又∵直线AB过焦点F且斜率为,∴直线AB的方程为:
代入抛物线方程消去y并化简得,
解法一:解得
所以
解法二:
设,则,
过分别作准线的垂线,设垂足分别为如图所示.
故答案为:
变式6-2.(2023秋·河南·高三郑州一中校联考阶段练习)已知双曲线的左、右焦点分别为,斜率存在的直线交的右支于两点,且直线与的斜率之和为0.记交轴于点.
(1)求的坐标;
(2)若直线交直线于点,求的值.
【答案】(1)
(2)
【分析】(1)设直线,然后联立方程组,根据列式代入求解即可;
(2)根据题目中的对称关系分析出点的轨迹是以为焦点,长轴长为的椭圆的一部分,然后根据椭圆的定义求解出的值.
【详解】(1)
设直线,
联立消去,得,
故,
且直线与的斜率之和为,
化简,代入
即,
整理得,则过定点,即.
(2)设关于轴的对称点为,则,
由,得直线与直线关于轴对称,直线即为直线,
又直线
联立解得:,
又,故,
即,且,
所以点的轨迹为以为焦点,长轴长为的椭圆的一部分,
根据椭圆的定义,知.
【点睛】根据直线与直线关于轴对称,直线即为直线,然后表示出直线,求出交点,结合的关系求解出点的轨迹方程是本题的难点和突破点,值得积累;
题型七: 图形的面积问题
【典例分析】
例7-1.(2021·全国·高考真题)已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为 .
【答案】
【分析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.
【详解】因为为上关于坐标原点对称的两点,
且,所以四边形为矩形,
设,则,
所以,
,即四边形面积等于.
故答案为:.
例7-2.(2022·全国·统考高考真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
(1)求l的斜率;
(2)若,求的面积.
【答案】(1);
(2).
【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;
(2)根据直线的斜率之和为0可知直线的倾斜角互补,根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点A到直线的距离,即可得出的面积.
【详解】(1)因为点在双曲线上,所以,解得,即双曲线.
易知直线l的斜率存在,设,,
联立可得,,
所以,,且.
所以由可得,,
即,
即,
所以,
化简得,,即,
所以或,
当时,直线过点,与题意不符,舍去,
故.
(2)[方法一]:【最优解】常规转化
不妨设直线的倾斜角为,因为,所以,由(1)知,,
当均在双曲线左支时,,所以,
即,解得(负值舍去)
此时PA与双曲线的渐近线平行,与双曲线左支无交点,舍去;
当均在双曲线右支时,
因为,所以,即,
即,解得(负值舍去),
于是,直线,直线,
联立可得,,
因为方程有一个根为,所以,,
同理可得,,.
所以,,点到直线的距离,
故的面积为.
[方法二]:
设直线AP的倾斜角为,,由,得,
由,得,即,
联立,及得,,
同理,,,故,
而,,
由,得,
故
【变式训练】
变式7-1.(2023春·河北石家庄·高三校联考期中)已知抛物线的焦点为,过点作抛物线的两条切线,切点分别为,,则的面积为( )
A.B.C.12D.
【答案】A
【分析】设出切线方程并联立抛物线方程可得,令及韦达定理可得、的值,再结合三角形的面积公式计算即可求得结果.
【详解】如图所示,
设,,过点且与抛物线相切的直线方程为,
联立,消去,得,
则,即.
设方程的两解为,,则,,
则,.
易知,则,,
.
故选:A.
变式7-2.(2024·全国·高三专题练习)倾斜角为的直线过抛物线的焦点,且与交于A,两点
(1)求抛物线的准线方程;
(2)求的面积(为坐标原点).
【答案】(1)
(2)
【分析】(1)根据抛物线的方程,即可得出答案;
(2)由已知求出直线的方程,代入抛物线得出,解法一:求解得出的值,然后根据弦长公式求出,然后根据点到直线的距离,结合面积公式即可得出答案;解法二:根据抛物线的定义求出,然后根据点到直线的距离,结合面积公式即可得出答案.
【详解】(1)由已知可得,,焦点在轴上,
所以,抛物线的准线方程为.
(2)∵抛物线的方程为,∴抛物线的焦点F坐标为.
又∵倾斜角为的直线,所以斜率为,
∴直线AB的方程为:.
代入抛物线方程消去y并化简得.
解法一:解得,
所以.
又点到直线的距离为,
所以.
解法二:,设,则,
过分别作准线的垂线,设垂足分别为如图所示.
.
点到直线的距离为,
所以.
.
一、单选题
1.(2023秋·贵州黔东南·高三天柱民族中学校联考阶段练习)已知椭圆以及椭圆内一点,则以为中点的弦所在直线的斜率为( )
A.B.C.-4D.4
【答案】A
【分析】设出交点代入椭圆方程,相减化简得到答案.
【详解】设弦与椭圆交于,,斜率为,
则,,相减得到,
即,解得.
故选:A.
2.(2023秋·山西朔州·高三校考开学考试)已知是抛物线:上一点,过的焦点的直线与交于两点,则的最小值为( )
A.24B.28C.30D.32
【答案】D
【分析】求出抛物线方程后,设,不妨设,设直线的方程为,联立直线和抛物线方程消元后,利用韦达定理及抛物线的定义可得,利用基本不等式即可求出最小值.
【详解】因为是抛物线上一点,
所以,故,
则抛物线方程为,
设,不妨设,
设直线的方程为,
联立,
所以,
,
则,
当且仅当且时,等号成立,
故的最小值为,
故选:
3.(2023·江苏盐城·统考三模)定义曲线为双曲线的“伴随曲线”.在双曲线:的伴随曲线上任取一点,过分别作轴、轴的垂线,垂足分别为、,则直线与曲线的公共点的个数为( )
A.0B.1C.2D.与点的位置有关系
【答案】B
【分析】根据伴随曲线的定义和坐标关系以及直线与双曲线的联立即可求解.
【详解】双曲线:的伴随曲线为:
,
设P为上一点,
则,
过分别作轴、轴的垂线,垂足分别为、,则
,,
所以直线,
联立,
得,
所以
,
则直线与曲线的公共点的个数为1个,
故选:B.
4.(2023·全国·统考高考真题)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
A.B.C.D.
【答案】D
【分析】根据点差法分析可得,对于A、B、D:通过联立方程判断交点个数,逐项分析判断;对于C:结合双曲线的渐近线分析判断.
【详解】设,则的中点,
可得,
因为在双曲线上,则,两式相减得,
所以.
对于选项A: 可得,则,
联立方程,消去y得,
此时,
所以直线AB与双曲线没有交点,故A错误;
对于选项B:可得,则,
联立方程,消去y得,
此时,
所以直线AB与双曲线没有交点,故B错误;
对于选项C:可得,则
由双曲线方程可得,则为双曲线的渐近线,
所以直线AB与双曲线没有交点,故C错误;
对于选项D:,则,
联立方程,消去y得,
此时,故直线AB与双曲线有交两个交点,故D正确;
故选:D.
二、多选题
5.(2022·全国·统考高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为B.
C.D.
【答案】ACD
【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
6.(2023·河北唐山·开滦第二中学校考模拟预测)已知双曲线C:的左、右焦点分别为,,过作直线的垂线,垂足为P,O为坐标原点,且,过P作C的切线交直线于点Q,则( )
A.C的离心率为B.C的离心率为
C.△OPQ的面积为D.△OPQ的面积为
【答案】AC
【分析】设,由题意可求得, ,中,利用正弦定理求得,即可求得双曲线得离心率;通过设点表示出,利用切线求得P,Q两点坐标,可求△OPQ的面积.
【详解】直线和直线,是双曲线C:的两条渐近线,
设,则有,
又垂直于渐近线,渐近线方程为,,,
,而,,
,
在中,,由正弦定理:,
,,,
,A选项正确;
双曲线C的方程为:,渐近线为,
过点的切线与双曲线切于点,则有,
又,均在双曲线的渐近线上,故设,
又,,
,
当点为切点时,由,切线斜率存在,
设切线方程为,代入双曲线方程,
得
令,得,解得,
过点的切线方程为,
切线方程代入,解得,
切线方程代入,解得,
,
,则C选项正确.
故选:AC
三、填空题
7.(2023·吉林白山·抚松县第一中学校考模拟预测)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为 .
【答案】
【分析】设公共焦点为,进而可得准线为,代入双曲线及渐近线方程,结合线段长度比值可得,再由双曲线离心率公式即可得解.
【详解】设双曲线与抛物线的公共焦点为,
则抛物线的准线为,
令,则,解得,所以,
又因为双曲线的渐近线方程为,所以,
所以,即,所以,
所以双曲线的离心率.
故答案为:
8.(2023秋·湖南长沙·高三湖南师大附中校考阶段练习)如图,已知椭圆和抛物线的一个交点为P,直线交于点Q,过Q作的垂线交于点R(不同于Q),若是的切线,则椭圆的离心率是 .
【答案】
【分析】根据垂直关系以及两点斜率公式可得,联立直线方程与抛物线方程以及结合点差法的运用得,进而可求离心率.
【详解】不妨设点,点,则,且点,
则直线的斜率为,因为,得的斜率为,
得,……①
因为是的切线,记切线的斜率为k,则切线方程为,
由 消去x得,
由,又因为,
整理得,又因为,得,得,……②
由①②得,,得,
又因为点,点都在椭圆上,则
两式相减得,得,
故,得,又因为,得,得,
则椭圆的离心率为,
故答案为:.
四、解答题
9.(2020·天津·统考高考真题)已知椭圆的一个顶点为,右焦点为,且,其中为原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.
【答案】(Ⅰ);(Ⅱ),或.
【分析】(Ⅰ)根据题意,并借助,即可求出椭圆的方程;
(Ⅱ)利用直线与圆相切,得到,设出直线的方程,并与椭圆方程联立,求出点坐标,进而求出点坐标,再根据,求出直线的斜率,从而得解.
【详解】(Ⅰ)椭圆的一个顶点为,
,
由,得,
又由,得,
所以,椭圆的方程为;
(Ⅱ)直线与以为圆心的圆相切于点,所以,
根据题意可知,直线和直线的斜率均存在,
设直线的斜率为,则直线的方程为,即,
,消去,可得,解得或.
将代入,得,
所以,点的坐标为,
因为为线段的中点,点的坐标为,
所以点的坐标为,
由,得点的坐标为,
所以,直线的斜率为,
又因为,所以,
整理得,解得或.
所以,直线的方程为或.
10.(2020·山东·统考高考真题)已知抛物线的顶点在坐标原点,椭圆的顶点分别为,,,,其中点为抛物线的焦点,如图所示.
(1)求抛物线的标准方程;
(2)若过点的直线与抛物线交于,两点,且,求直线的方程.
【答案】(1);(2).
【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线的方程为,与抛物线方程联立,并利用韦达定理表示,并利用,求直线的斜率,验证后,即可得到直线方程.
【详解】解:(1)由椭圆可知,,
所以,,则,
因为抛物线的焦点为,可设抛物线方程为,
所以,即.
所以抛物线的标准方程为.
(2)由椭圆可知,,
若直线无斜率,则其方程为,经检验,不符合要求.
所以直线的斜率存在,设为,直线过点,
则直线的方程为,
设点,,
联立方程组,
消去,得.①
因为直线与抛物线有两个交点,
所以,即,
解得,且.
由①可知,
所以,
则,
因为,且,
所以,
解得或,
因为,且,
所以不符合题意,舍去,
所以直线的方程为,
即.
11.(2023·河南新乡·新乡市第一中学校考模拟预测)已知直线过抛物线的焦点.
(1)求抛物线C的方程;
(2)动点A在抛物线C的准线上,过点A作抛物线C的两条切线分别交x轴于M,N两点,当的面积是时,求点A的坐标.
【答案】(1)
(2)或
【分析】(1)求出焦点坐标为,从而得到,求出抛物线方程;
(2)设出,过点A的抛物线的切线方程设为,与抛物线方程联立,根据得到,设过点A的抛物线的两条切线方程的斜率分别为,求出,表达出,,列出方程,求出,得到点A的坐标.
【详解】(1)中令得:,
故焦点坐标为,故,解得:,故抛物线方程为;
(2)抛物线准线方程为:,
设,过点A的抛物线的切线方程设为,
联立得:,
由,设过点A的抛物线的两条切线方程的斜率分别为,
故,
令中,令得:,
不妨设,故,
则,
解得:,故点A的坐标为或.
12.(2024·全国·高三专题练习)已知双曲线E的两个焦点分别为,并且E经过点.
(1)求双曲线E的方程;
(2)过点的直线l与双曲线E有且仅有一个公共点,求直线l的方程.
【答案】(1)
(2)或
【分析】(1)根据双曲线的焦距及过点列出方程求解方程即可;
(2)分直线斜率存在,不存在讨论,当斜率存在时,利用直线与双曲线方程组有且只有一解求斜率即可.
【详解】(1)由已知可设双曲线E的方程为,
则,解得,
所以双曲线E的方程为.
(2)当直线l的斜率不存在时,显然不合题意,
所以可设直线l的方程为,如图,
联立,得(*),
①当,即或时,方程(*)只有一解,
所以直线l与双曲线E有且仅有一个公共点,
此时,直线l的方程为;
②当,即时,要使直线l与双曲线E有且仅有一个公共点,
则,解得,
此时,直线l的方程为.
综上所述,直线l的方程为或.
专题9.4 双曲线(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.4 双曲线(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题94双曲线原卷版docx、专题94双曲线解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
专题9.3 椭圆(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.3 椭圆(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题93椭圆原卷版docx、专题93椭圆解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
专题9.2 直线与圆的位置关系(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.2 直线与圆的位置关系(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题92直线与圆的位置关系原卷版docx、专题92直线与圆的位置关系解析版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。