专题10.2 统计案例(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用)
展开【核心素养】
1.会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系. 凸显数据分析及直观想象的核心素养.
2.能根据给出的线性回归方程系数公式建立线性回归方程(线性回归系数公式不要求记忆). 了解回归分析的基本思想、方法及其简单应用. 凸显数据分析、直观想象、数学运算、数学应用的核心素养.
3. 考查独立性检验(只要求2×2列联表)的思想、方法及其初步应用.凸显数据分析、直观想象、数学运算、数学应用的核心素养.
知识点一
变量的相关关系
1.变量的相关关系
(1)相关关系:两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.
(2)相关关系的分类:正相关和负相关.
(3)线性相关:一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们称这两个变量线性相关.
知识点二
样本相关系数
.
(2)当r>0时,成对样本数据正相关;当r<0时,成对样本数据负相关.
(3)|r|≤1;当|r|越接近1时,成对样本数据的线性相关程度越强;当|r|越接近0时,成对样本数据的线性相关程度越弱.
知识点三
一元线性回归模型
(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.
(2)回归方程:方程eq \(y,\s\up7(^))=x+eq \(a,\s\up7(^))是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(xn,yn)的回归方程,其中eq \(a,\s\up7(^)),是待定参数.
(3)残差:残差:观测值减去预测值,称为残差
知识点四
独立性检验
(1)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为
2×2列联表
构造一个随机变量K2=eq \f (nad-bc2,a+ba+cb+dc+d),其中n=a+b+c+d为样本容量.
(2)计算随机变量χ2=eq \f(nad-bc2,a+bc+da+cb+d),利用χ2的取值推断分类变量X和Y是否独立的方法称为χ2独立性检验.
常考题型剖析
题型一: 相关关系的判断及计算
【典例分析】
例1-1.(2023·天津·统考高考真题)调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数,下列说法正确的是( )
A.花瓣长度和花萼长度没有相关性
B.花瓣长度和花萼长度呈现负相关
C.花瓣长度和花萼长度呈现正相关
D.若从样本中抽取一部分,则这部分的相关系数一定是
例1-2.【多选题】(2023·全国·高三专题练习)对四组数据进行统计,获得如图所示的散点图,关于其相关系数的关系,正确的有( )
A.B.C.D.
【总结提升】
判断相关关系的两种方法:
(1)散点图法:如果样本点的分布从整体上看大致在某一曲线附近,变量之间就有相关关系;如果样本点的分布从整体上看大致在某一直线附近,变量之间就有线性相关关系.
(2)决定系数法:利用决定系数判定,R2越接近1,拟合效果越好,相关性越强.
【变式训练】
变式1-1.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))对两个变量x,y进行线性相关检验,得线性相关系数r1=0.8995,对两个变量u,v进行线性相关检验,得线性相关系数r2=﹣0.9568,则下列判断正确的是( )
A.变量x与y正相关,变量u与v负相关,变量x与y的线性相关性较强
B.变量x与y负相关,变量u与v正相关,变量x与y的线性相关性较强
C.变量x与y正相关,变量u与v负相关,变量u与v的线性相关性较强
D.变量x与y负相关,变量u与v正相关,变量u与v的线性相关性较强
变式1-2.(2015·湖北·高考真题(文))已知变量和满足关系,变量与正相关. 下列结论中正确的是
A.与负相关,与负相关
B.与正相关,与正相关
C.与正相关,与负相关
D.与负相关,与正相关
题型二:误差分析
【典例分析】
例2-1.(2023上·云南保山·高三统考期末)新冠肺炎疫情发生以来,中医药全面参与疫情防控救治,做出了重要贡献.某中医药企业根据市场调研与模拟,得到研发投入(亿元)与产品收益(亿元)的数据统计如下表:
用最小二乘法求得关于的经验回归直线方程是,相关系数(若,则线性相关程度一般,若,则线性相关程度较高),下列说法不正确的有( )
A.变量与正相关且相关性较强
B.
C.当时,的估计值为40.3
D.相应于点的残差为0.8
例2-2.(2023·河北衡水·河北衡水中学校考一模)某新能源汽车生产公司,为了研究某生产环节中两个变量之间的相关关系,统计样本数据得到如下表格:
由表格中的数据可以得到与的经验回归方程为,据此计算,下列选项中残差的绝对值最小的样本数据是( )
A.B.
C.D.
【变式训练】
变式2-1.(2023·全国·高三专题练习)已知与线性相关,且求得回归方程为,变量,的部分取值如表所示,则( )
A.与负相关B.
C.时,的预测值为D.处的残差为
变式2-2.(2023上·全国·高三校联考开学考试)对具有线性相关关系的变量,有一组观测数据,其经验回归方程为,且,则相应于点的残差为 .
题型三: 一元线性回归模型
【典例分析】
例3-1.(2023上·天津武清·高三天津市武清区杨村第一中学校考开学考试)5G技术在我国已经进入高速发展的阶段,5G手机的销量也逐渐上升,某手机商城统计了最近5个月手机的实际销量,如下表所示:
若y与x线性相关,且线性回归方程为,则下列说法不正确的是( )
A.由题中数据可知,变量y与x正相关
B.线性回归方程中
C.时,残差为0.02
D.可以预测时该商场5G手机销量约为1.72(千只)
例3-2.(2023下·河南驻马店·高二统考期末)市场监管部门对某线下某实体店2023年前两季度的月利润情况进行调查统计,得到的数据如下:
(1)是否可以用线性回归模型拟合y与x的关系?请用相关系数r加以说明;(参考:若时,则线性相关程度较高,,则线性相关程度一般,计算时精确度为0.01)
(2)利用最小二乘法求出y关于x的回归方程;用样本估计总体,请预估第9月份的利润.
附:对于一组数据,其回归直线的斜率
,.相关系数.
参考数据:,,,,,.
【总结提升】
1.求线性回归方程的步骤
(2)计算
(3)利用eq \(a,\s\up6(^))=eq \x\t(y)-eq \(b,\s\up6(^))eq \x\t(x),求eq \(a,\s\up6(^)).
(4)写出经验回归方程.
2.样本点的中心:对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(eq \(x,\s\up7(-)),eq \(y,\s\up7(-)))称为样本点的中心,即回归直线经过点(eq \x\t(x),eq \x\t(y)).
【变式训练】
变式3-1.(2022·山西·怀仁市第一中学校高三期末(文))某工厂为研究某种产品的产量x(吨)与所需某种原材料y(吨)的相关性,在生产过程中收集了对应数据如表所示:
根据表中数据,得出关于的回归直线方程为.据此计算出在样本处的残差为,则表中的值为__________.(注:残差是实际观察值与估计值之间的差,)
变式3-2.(2022下·西藏拉萨·高一校联考期末)根据统计,某蔬菜基地西红柿亩产量的增加量y(百千克)与某种液体肥料每亩使用量x(千克)之间的对应数据的散点图,如图所示.
(1)依据数据的散点图可以看出,可用线性回归模型拟合y与x的关系,请计算相关系数r并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);
(2)求y关于x的回归方程,并预测当液体肥料每亩使用量为10千克时,西红柿亩产量的增加量约为多少?
附:相关系数公式.
参考数据:
回归方程中斜率和截距的最小二乘估计公式分别为.
题型四: 一元线性回归模型的应用
【典例分析】
例4-1.(2023·全国·高三专题练习)某种产品的广告支出费用x(单位:万元)与销售量y(单位:万件)之间的对应数据如表所示:
根据表中的数据可得回归直线方程2.27x,R2≈0.96,则
①第三个样本点对应的残差1
②在该回归模型对应的残差图中,残差点比较均匀地分布在倾斜的带状区域中
③销售量的多少有96%是由广告支出费用引起的
上述结论判断中有一个是错误的,其序号为 _____________
例4-2.(2020·全国·高考真题(理))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,≈1.414.
【总结提升】
1.一元线性回归模型的应用
2. 在线性回归分析中,只需利用公式求出回归直线方程并利用其进行预测即可(注意回归直线过样本点的中心(eq \x\t(x),eq \x\t(y))),利用回归方程进行预测,常把线性回归方程看作一次函数,求函数值.利用回归直线方程求出的是估算值,非准确值.
3. 对于非线性回归分析问题,应先进行变量代换,求出代换后的回归直线方程,再求非线性回归方程.
【变式训练】
变式4-1.(2023下·江西萍乡·高二统考期末)汽车轮胎凹槽深度是影响汽车刹车的因素,汽车行驶会导致轮胎面磨损.某实验室通过实验测得行驶里程与某品牌轮胎凹槽深度的数据,建立了如下回归模型,通过实验数据分析与计算得到如下结论:①;②,令,,则回归方程应为 .
变式4-2.(2023下·江西吉安·高二统考期末)某乡镇为了提高乡镇居民收入,对山区进行大面积指导农民种植黄茋、党参、当归等药材,同时在种植药材附近种植草,让牛羊吃,发展畜牧业,第二年将种植药材的地改种草让牛羊吃,将牛羊吃过的草地改种药材,这样药材的生长主要依靠牛羊等有机肥来供给,提高药效,同时增加农民的经济收入.现将该乡镇某农户近7年(2016-2022年对应年份代码1-7)的种植药材的收入金额绘成折线图,同时统计出相关数据:,,,,.
(1)根据图中所给出的折线图,判断和哪一个更适合作为回归模型;(给出判断即可,不必说明理由)
(2)求相关系数(保留两位小数)并求药材种植收入关于年份代码的回归直线方程;
(3)若在生物学上将在药材附近同时种植草称作间作,将药材和草每年轮流种植称作轮作,根据题目所给信息,分析这两种种植方式对当地居民收入的影响.
附:相关系数,回归直线方程中斜率和截距的最小二乘估计公式分别为,.
题型五: 独立性检验
【典例分析】
例5-1.(2023·全国·统考高考真题)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
试验组的小白鼠体重的增加量从小到大排序为
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(1)计算试验组的样本平均数;
(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表
(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
附:,
例5-2.(2021·全国·高考真题(文))甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?
附:
【规律方法】
1.比较几个分类变量有关联的可能性大小的方法
(1)通过计算K2的大小判断:K2越大,两变量有关联的可能性越大.
(2)通过计算|ad-bc|的大小判断:|ad-bc|越大,两变量有关联的可能性越大.
2.独立性检验的一般步骤
(1)根据样本数据制成2×2列联表.
(2)根据公式K2=eq \f (nad-bc2,a+ba+cb+dc+d)计算K2的观测值k.
(3)比较观测值k与临界值的大小关系,作统计推断.
3. 独立性检验是判断两个分类变量之间是否有关系的一种方法.在判断两个分类变量之间是否有关系时,作出等高条形图只能近似地判断两个分类变量是否有关系,而独立性检验可以精确地得到可靠的结论.
【变式训练】
变式5-1.(2023·四川雅安·统考一模)“一带一路”是促进各国共同发展,实现共同繁荣的合作共赢之路.为了了解我国与某国在“一带一路”合作中两国的贸易量情况,随机抽查了100天进口贸易量与出口贸易量(单位:亿人民币/天)得下表:
(1)估计事件“我国与该国贸易中,一天的进口贸易量与出口贸易量均不超过100亿人民币”的概率;
(2)根据所给数据,完成下面的列联表:
(3)根据(2)中的列联表,判断是否有99%的把握认为“我国与该国贸易中一天的进口贸易量与出口贸易量”有关?
附:.
变式5-2.(2023上·四川成都·高三四川省成都列五中学校考阶段练习)为了有针对性地提高学生体育锻炼的积极性,某校需要了解学生是否经常锻炼与性别因素有关,为此随机对该校100名学生进行问卷调查,得到如下列联表.
已知从这100名学生中任选1人,经常锻炼的学生被选中的概率为.
附:.
(1)完成上面的列联表;
(2)根据列联表中的数据,判断能否有90%的把握认为该校学生是否经常锻炼与性别因素有关.
题型六: 统计、统计案例、概率的综合问题
【典例分析】
例6-1.(2017·全国·高考真题(理))海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较.附:
例6-2.(2020·全国·高考真题(文))某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
附:,
【变式训练】
变式6-1.(2023上·重庆沙坪坝·高三重庆八中校考期中)某校为了弘扬中国诗词文化,现要求全校学生参加诗词大赛,随机抽取了100名学生的测试成绩(单位:分),将数据分成5组:并整理得到如图的频率分布直方图.
(1)估计该校学生的测试成绩的中位数及平均数(同一组中的数据用该组区间的中点值作代表);
(2)若规定成绩不低于80分的记为“诗词达人”,已知被抽取的男生中的“诗词达人”人数占被抽取男生总数的一半,且本次调查得出“在犯错误的概率不超过5%的前提下认为是否为诗词达人与性别有关”的结论,则被调查的100名学生中男生至少有多少人?
附:.
变式6-2.(2023上·四川眉山·高三校考阶段练习)人工智能教育是将人工智能与传统教育相融合,借助人工智能和大数据技术打造一个智能化教育生态,通过线上和线下结合的学习方式,让学生享受到个性化教育.为了解某公司人工智能教育发展状况,通过中国互联网数据平台得到该公司2017年—2021年人工智能教育市场规模统计表,如表所示,用表示年份代码(年用1表示,2018年用2表示,依次类推),用表示市场规模(单位:百万元).
附1:线性回归方程:,其中,;
附2:,.
(1)已知与具有较强的线性相关关系,求关于的线性回归方程;
(2)该公司为了了解社会人员对人工智能教育的满意程度,调研了200名参加过人工智能教育的人员,得到数据如表:
完成列联表,并判断是否有的把握认为社会人员的满意程度与性别有关?
.
一、选择题
1.(2022·宁夏银川·银川一中校考模拟预测)已知下列命题:
①回归直线恒过样本点的中心;
②两个变量线性相关性越强,则相关系数就越接近于1;
③两个模型中残差平方和越小的模型拟合的效果越好.
则正确命题的个数是( ).
A.0B.1C.2D.3
2.(2022上·高二单元测试)用最小二乘法得到一组数据(i=1,2,3,4,5)的线性回归方程为,若,则等于( )
A.11B.13
C.53D.65
3.(2023·四川成都·四川省成都市玉林中学校考模拟预测)太阳能是一种可再生能源,光伏是太阳能光伏发电系统的简称,主要有分布式与集中式两种方式.下面的图表展示了近年来中国光伏市场的发展情况,则下列结论中不正确的是( )
A.2013~2020年,年光伏发电量与年份成正相关
B.2013~2020年,年光伏新增装机规模同比(与上年相比)增幅逐年递减
C.2013~2020年,年新增装机规模中,分布式的平均值小于集中式的平均值
D.2013~2020年,每年光伏发电量占全国发电总量的比重与年份成正相关
多选题
4.【多选题】(2023·全国·高三专题练习)在研究某品牌汽车的使用年限x(单位:年)与残值y(单位:万元)之间的关系时,根据调研数据得到如下的对应值表:
利用最小二乘法,得到回归直线方程为,下列说法正确的是( )
A.x与y的样本相关系数B.回归直线必过点
C.D.预测该品牌汽车使用20年后,残值约为2万元
5.(2023上·江苏苏州·高三苏州中学校考开学考试)已知变量,之间的经验回归方程为,且变量,的数据如图所示,则下列说法正确的是( )
A.变量,之间呈正相关关系B.实数m的值等于5
C.该回归直线必过D.相应于的残差估计值为0.6
填空题
6.(2023下·四川遂宁·高二射洪中学校考阶段练习)某池塘中水生植物的覆盖水塘面积x(单位:)与水生植物的株数y(单位:株)之间的相关关系,收集了4组数据,用模型去拟合x与y的关系,设,x与z的数据如表格所示:
得到x与z的线性回归方程,则 .
解答题
7.(2023上·上海黄浦·高三格致中学校考阶段练习)某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了件,它们的质量指标值统计如下:
附:,其中 .
(1)估计该工厂生产这种零件的质量指标值的平均数;(同一组中的数据用该组区间的中点值作代表);
(2)根据所给数据,完成下面的2×2列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.
8.(2023·江西九江·统考一模)某IT公司在A,B两地区各开设了一家分公司,为了解两家分公司员工的业务水平,对员工们进行了业务水平测试,满分为100分,80分及以上为优秀. A地区分公司的测试成绩分布情况如下:
(1)完成A地区分公司的频率分布直方图,并求出该公司员工测试成绩的中位数;
(2)补充完成下列列联表,并判断是否有的把握认为两家分公司员工业务水平有差异.
9.(2022·全国·高考真题(文))甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:,
10.(2023上·四川成都·高三四川省成都列五中学校考阶段练习)最近,纪录片《美国工厂》引起中美观众热议,大家都认识到,大力发展制造业,是国家强盛的基础,而产业工人的年龄老化成为阻碍美国制造业发展的障碍,中国应未雨绸缪.某工厂有35周岁以上(含35周岁)工人300名,35周岁以下工人200名,为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“35周岁以上(含35周岁)”和“35周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:分别加以统计,得到如图所示的频率分布直方图.
,附表:
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“35周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成的列联表,并判断是否有95%的把握认为“生产能手与工人所在的年龄组有关”?
11.(2024·浙江台州·统考一模)为了了解高中学生课后自主学习数学时间(分钟/每天)和他们的数学成绩(分)的关系,某实验小组做了调查,得到一些数据(表一).
表一
(1)请根据所给数据求出,的经验回归方程,并由此预测每天课后自主学习数学时间为100分钟时的数学成绩:(参考数据:,,的方差为200)
(2)基于上述调查,某校提倡学生周末在校自主学习.经过一学期的实施后,抽样调查了220位学生.按照是否参与周未在校自主学习以及成绩是否有进步统计,得到列联表(表二).依据表中数据及小概率值的独立性检验,分析“周末在校自主学习与成绩进步”是否有关.
表二
附:,,.
12.(2023·全国·模拟预测)为了纪念中国古代数学家祖冲之,2019年11月26日,联合国教科文组织在第四十届大会宣布每年的3月14日为“国际数学日”.某高中为了让同学们感受数学魅力,传播数学文化,从2020年起,于每年的“国际数学日”开始举办为期一周的数学文化节,并且该校每年在数学文化节活动结束后,都会从全校学生中随机抽取150名学生了解他们参与活动的情况,经统计得到如下表格.
(1)①已知可用线性回归模型拟合与之间的关系,求关于的回归方程;
②若该校共有3600名学生,据此预测2024年全校参与数学文化节活动的人数;
(2)2023年,该校为了了解不同性别的学生对数学文化节是否满意,从参与数学文化节活动的学生中随机抽取150名,统计得到如下列联表,判断是否有的把握认为该校学生对数学文化节活动是否满意与学生的性别有关.
参考公式及参考数据:回归方程中斜率与截距的最小二乘估计公式分别为.
,其中.
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
研发投入(亿元)
1
2
3
4
5
产品收益(亿元)
3
7
9
10
11
时间x
1
2
3
4
5
销售量y(千只)
0.5
0.8
1.0
1.2
1.5
月份x
1
2
3
4
5
6
净利润y(万元)
1.0
1.4
1.7
2.0
2.2
2.4
3
4
5
6
2
3
4
广告支出费用x
2.2
2.6
4.0
5.3
5.9
销售量y
3.8
5.4
7.0
11.6
12.2
对照组
试验组
0.100
0.050
0.010
2.706
3.841
6.635
一级品
二级品
合计
甲机床
150
50
200
乙机床
120
80
200
合计
270
130
400
0.050
0.010
0.001
k
3.841
6.635
10.828
进口
出口
32
18
4
6
8
12
3
7
10
进口
出口
0.050
0.010
0.001
3.841
6.635
10.828
经常锻炼
不经常锻炼
总计
男
35
女
25
总计
100
0.1
0.05
0.01
0.001
2.706
3.841
6.635
10.828
箱产量<50kg
箱产量≥50kg
旧养殖法
新养殖法
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
锻炼人次
空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
12
3(轻度污染)
6
7
8
4(中度污染)
7
2
0
人次≤400
人次>400
空气质量好
空气质量不好
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
0.100
0.050
0.025
0.010
2.706
3.841
5.024
6.635
x
1
2
3
4
5
y
45
56
64
68
72
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
满意
不满意
总计
男
90
110
女
30
总计
150
x
2
4
6
8
10
y
17
16
14
13
11
6
8
10
12
6
m
3
2
x
3
4
6
7
z
2
2.5
4.5
7
质量指标值
甲车间(件)
15
20
25
31
9
乙车间(件)
5
10
15
39
31
0.05
0.01
0.001
3.841
6.635
10.828
合计
甲车间
乙车间
合计
成绩
频数
5
20
50
20
5
优秀
不优秀
合计
A地区分公司
B地区分公司
40
60
合计
0.100
0.050
0.025
0.010
0.001
2.706
3.841
5.024
6.635
10.828
准点班次数
未准点班次数
A
240
20
B
210
30
0.100
0.050
0.010
2.706
3.841
6.635
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
生产能手
非生产能手
合计
35岁以下
35岁以上
合计
编号
1
2
3
4
5
学习时间
30
40
50
60
70
数学成绩
65
78
85
99
108
没有进步
有进步
合计
参与周末在校自主学习
35
130
165
未参与周末不在校自主学习
25
30
55
合计
60
160
220
0.10
0.05
0.010
0.005
0.001
2.706
3.841
6.635
7.879
10.828
年份
2020
2021
2022
2023
年份代码
1
2
3
4
参与活动人数
95
100
105
120
满意
不满意
合计
男生
90
15
105
女生
30
15
45
合计
120
30
150
0.100
0.050
0.010
2.706
3.841
6.635
专题9.5 抛物线(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.5 抛物线(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题95抛物线原卷版docx、专题95抛物线解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
专题9.4 双曲线(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.4 双曲线(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题94双曲线原卷版docx、专题94双曲线解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
专题9.3 椭圆(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.3 椭圆(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题93椭圆原卷版docx、专题93椭圆解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。