专题11.1 两个计数原理(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用)
展开【核心素养】
1.考查对分类加法计数原理和分步乘法计数原理的理解及简单应用,凸显数学建模的核心素养.
知识点一
分类计数原理
分类加法计数原理(加法原理)的概念
一般形式:完成一件事有n类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,……,在第n类方案中有种不同的方法,那么完成这件事共有N=++……+种不同的方法.
知识点二
分步计数原理
分步乘法计数原理(乘法原理)的概念
一般形式:完成一件事需要n个步骤,做第1步有种不同的方法,做第2步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有N=种不同的方法.
知识点三
两个原理的区别
(1)“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.
(2)“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.
3.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件.
知识点四
计数问题的常用解法
(1)枚举法:将各种情况通过树形图、表格等方法一一列举出来.它适用于计数种数较少的情况,分类计数时将问题分类实际上就是将分类种数一一列举出来.
枚举法是一种解决问题的基本方法,当计数的种数不是很多时,都可以用此方法解决.
(2)间接法:若计数时分类较多,或无法直接计算时,可用间接法,先求出没有限制条件的种数,再减去不满足条件的种数.
(3)字典排序法:字典排序法就是把所有的字母分为前后,先排前面的字母,前面的字母排完后再依次排后面的字母,最后的字母排完,则排列结束.
利用字典排序法并结合分步乘法计数原理可以解决与排列顺序有关的计数问题,利用字典排序法还可以把这些排列不重不漏地一一列举出来.
(4)模型法:模型法就是通过构造图形,利用形象、直观的图形帮助我们分析、解决问题的方法.模型法是解决计数问题的重要方法.
常考题型剖析
题型一: 分类计数原理的应用
【典例分析】
例1-1.(2022·四川成都·双流中学校考模拟预测)如图,小黑圆表示网络的结点,结点之间的连线表示它们有网线相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息( )
A.26B.24C.20D.19
例1-2.(2023·全国·高三专题练习)已知集合,,在中任取一元素,在中任取一元素,组成数对,则其中的数对有多少个?
【总结提升】
利用分类加法计数原理解题的一般步骤
(1)分类,即将完成这件事情的方法分成若干类;
(2)计数,求出每一类中的方法数;
(3)结论,将各类的方法数相加得出结果.
【变式训练】
变式1-1.(2023上·广东湛江·高三统考阶段练习)某企业面试环节准备编号为的四道试题,编号为的四名面试者分别回答其中的一道试题(每名面试者回答的试题互不相同),则每名面试者回答的试题的编号和自己的编号都不同的情况共有( )
A.9种B.10种C.11种D.12种
变式1-2.某校开设A类选修课3门,B类选修课4门,若要求从两类课程中选一门,则不同的选法共有( )
A.3种 B.4种
C.7种 D.12种
题型二:分步计数原理的应用
【典例分析】
例2-1.(2022·全国·高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
A.12种B.24种C.36种D.48种
例2-2.(2023上·高二课时练习)“数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相同,若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从小到大排列的,则不同的填法种数为( )
A.72B.108
C.144D.196
【总结提升】
利用分步乘法计数原理解题的一般思路.
(1)分步:将完成这件事的过程分成若干步;
(2)计数:求出每一步中的方法数;
(3)结论:将每一步中的方法数相乘得最终结果.
【变式训练】
变式2-1.(高考真题)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同报名方法有( )
A.10种B.20种C.25种D.32种
变式2-2.(2005·北京·高考真题)从0,1,2,3这四个数中选三个不同的数作为函数的系数,可组成不同的一次函数共有 个,不同的二次函数共有 个.(用数字作答)
题型三: 计数原理的实际应用
【典例分析】
例3-1.(2023上·河南·高三校联考开学考试)高二1、2、3班各有升旗班同学人数分别为:1、3、3人,现从中任选2人参加升旗,则2人来自不同班的选法种数为( )
A.12B.15C.20D.21
例3-2.(2022上·四川遂宁·高三射洪中学校考阶段练习)随着外地返乡人员的增加,当前防疫形势愈加严峻,射洪已经发现了多起新冠阳性病人.射洪中学计划下周星期一、二、三,连续三天对我校在校师生进行核酸检测.高三数学组有金老师、赵老师、谭老师、黄老师四人主动申请参与信息采集.每人自行选择其中的某一天参与,但金老师和谭老师不能在同一天参加,则不同的安排方式有 .(用数字作答)
【总结提升】
1.应用两个计数原理解题时的策略
(1)确定计数原理:要分清涉及的问题从大的方面看是利用分类加法计数原理还是分步乘法计数原理,还是两种原理综合应用解题.
(2)处理好类与步的关系:对于较为复杂的题目,在某一类中需要分步计算所用的方法,而在某一步中又可能分类计算所用的方法,两者要有机结合.
(3)注意不重不漏:做到分类类不重,分步步不漏.
2.应用分步乘法计数原理的注意事项
(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.
(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.
(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.
(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.
【变式训练】
变式3-1.【多选题】(2023·全国·高三专题练习)某校高二年级安排甲、乙、丙三名同学到A,B,C,D,E五个社区进行暑期社会实践活动,每名同学只能选择一个社区进行实践活动,且多名同学可以选择同一个社区进行实践活动,则下列说法正确的有( )
A.如果社区A必须有同学选择,则不同的安排方法有61种
B.如果同学甲必须选择社区A,则不同的安排方法有50种
C.如果三名同学选择的社区各不相同,则不同的安排方法共有60种
D.如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种
变式3-2.(2023下·江苏扬州·高三仪征中学校考阶段练习)已知如图所示的电路中,每个开关都有闭合、不闭合两种可能,因此5个开关共有种可能,在这种可能中,电路从P到Q接通的情况有 种.
题型四: 代数问题中的计数
【典例分析】
例4-1.(2017·全国·高三专题练习)设集合A={0,1,2,3,4,5,6,7},如果方程x2-mx-n=0 (m,n∈A)至少有一个根x0∈A,就称方程为合格方程,则合格方程的个数为( )
A.13B.15
C.17D.19
例4-2.【多选题】(2022·江苏·高三专题练习)已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别记作a,b.则下列说法正确的有( )
A.表示不同的正数的个数是6
B.表示不同的比1小的数的个数是6
C.(a,b)表示x轴上方不同的点的个数是6
D.(a,b)表示y轴右侧不同的点的个数是6
【变式训练】
变式4-1.(2003·全国·高考真题)在直角坐标系中,已知三边所在直线的方程分别为,则内部和边上整点(即横、纵坐标均为整数的点)的总数是( )
A.95B.91C.88D.75
变式4-2.(2021下·高二课时练习)已知直线方程,若从0、1、2、3、5、7这六个数中每次取两个不同的数分别作为A、B的值,则可表示 条不同的直线.
题型五: 数字排列问题中的计数
【典例分析】
例5-1.(2023·全国·高三专题练习)由1,2,3三个数字组成的五位数中,相邻的数字不相同的五位数共有 个.
例5-2.(2021下·高二课时练习)由数字1,2,3,4,5可以组成多少个三位数(各位上的数字可以重复)?
【变式训练】
变式5-1.(2023·全国·高三专题练习)从1,2,3,4,5,6中选取4个数字,组成各个数位上的数字既不全相同,也不两两互异的四位数,记四位数中各个数位上的数字从左往右依次为a,b,c,d,且要求,则满足条件的四位数的个数为 .
变式5-2.(2022下·山东聊城·高二统考期末)数字2022具有这样的性质:它是6的倍数并且各位数字之和为6,称这种正整数为“吉祥数”.在所有的三位正整数中,“吉祥数”的个数为 .
题型六: 几何问题中的计数
【典例分析】
例6-1.(2023·全国·高三专题练习)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )
A.48B.18C.24D.36
例6-2.(2022·全国·高二专题练习)从正十五边形的顶点中选出3个构成钝角三角形,则不同的选法有( ).
A.105种B.225种C.315种D.420种
【变式训练】
变式6-1.(2018·云南昆明·高三昆明一中阶段练习)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( ).
A.20种B.16种C.12种D.8种
变式6-2.(2022上·上海宝山·高二上海交大附中校考期中)正方体的8个顶点中,选取4个共面的顶点,有 种不同选法
题型七: 涂色问题中的计数
【典例分析】
例7-1.(2023下·江西·高三统考阶段练习)中国是世界上最早发明雨伞的国家,伞是中国劳动人民一个重要的创造.如图所示的雨伞,其伞面被伞骨分成8个区域,每个区域分别印有数字1,2,3,..,8,现准备给该伞面的每个区域涂色,要求每个区域涂一种颜色,相邻两个区域所涂颜色不能相同,对称的两个区域(如区域1与区域5)所涂颜色相同.若有7种不同颜色的颜料可供选择,则不同的涂色方案有( )
A.1050种B.1260种C.1302种D.1512种
例7-2.(2022下·江苏常州·高二常州高级中学校考期中)对正方体的6个面进行涂色,有5种不同的颜色可供选择.要求每个面只涂一种颜色,且有公共棱的两个面不同色,则总的涂色方法个数为 (填写数字)
【总结提升】
涂色问题:涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.
涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.
【变式训练】
变式7-1.(2023·全国·高三专题练习)如图,一个地区分为5个行政区域,现给该地区的5个区域涂色,要求相邻区域不得使用同一种颜色,现有4种颜色可供选择,则不同的涂色方法共有 种.
变式7-2.(2021上·高二课时练习)用6种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.若允许同一种颜色多次使用,则该板报有多少种书写方案?
.
一、选择题
1.(2023上·山东·高三校联考阶段练习)某商店共有,,三个品牌的水杯,若甲、乙、丙每人买了一个水杯,且甲买的不是品牌,乙买的不是品牌,则这三人买水杯的情况共有( )
A.3种B.7种C.12种D.24种
2.(2023下·江苏扬州·高二校考阶段练习)甲、乙分别从门不同课程中选修门,且人选修的课程不同,则不同的选法有( )种.
A.B.C.D.
3.(2021·山东滨州·统考二模)甲、乙两人做从装有14个玻璃球的盒子中抓取玻璃球的游戏,规定:甲、乙两人轮流抓取,每次至少抓取1个,最多抓取4个,最后一次取完者获胜.若甲先抓取,为确保甲一定获胜,则甲第一次应该抓取的玻璃球个数为( )
A.1B.2C.3D.4
4.(2023·全国·高三专题练习)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两个端点异色,如果只有5种颜色可供使用,则不同染色方法的种数为( )
A.192B.420C.210D.72
5.(2023上·湖南·高三临澧县第一中学校联考开学考试)在如图所示的表格中填写,,三个数字,要求每一行、每一列均有这个数字,则不同的填法种数为( ).
A.B.C.D.
6.(2023·浙江·模拟预测)五行是华夏民族创造的哲学思想,多用于哲学、中医学和占卜方面,五行学说是华夏文明重要组成部分.古代先民认为,天下万物皆由五类元素组成,分别是金、木、水、火、土,彼此之间存在相生相克的关系.下图是五行图,现有5种颜色可供选择给五“行”涂色,要求五行相生不能用同一种颜色(例如金生火,水生木,不能同色),五行相克可以用同一种颜色(例如水克火,木克土,可以用同一种颜色),则不同的涂色方法种数有( )
A.3125B.1000C.1040D.1020
7.(2021下·浙江湖州·高二校联考期中)将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )
A.90B.135C.270D.360
二、填空题
8.(2023下·广东·高二校联考期中)用5种不同的颜色给如图标有A,B,C,D的各部分涂色,每部分只涂一种颜色,且相邻(有公共边)两部分不同颜色,则不同的涂色方法共有 .
9.(2023·全国·模拟预测)品牌电商服务商是指专门为品牌方提供电子商务服务的商家,其中包括运营、IT、营销、仓储物流、客户服务等内容.某品牌方准备与甲、乙、丙3家服务商进行合作,为此对这3家服务商的运营、IT、营销、仓储物流、客户服务进行考察,并根据考察结果对每项内容按照从优到劣分为3个等级,则甲服务商的5项内容等级均高于乙和丙服务商的所有可能情况的种数为 .
10.(2023下·重庆沙坪坝·高三重庆一中校考阶段练习)8个完全相同的球放入编号1,2,3的三个空盒中,要求放入后3个盒子不空且数量均不同,则有 种放法.
11.(2001·全国·高考真题)圆周上有个等分点,以其中三个点为顶点的直角三角形的个数为 .
四、解答题
12.(2023下·山西晋中·高二校考期中)书架的第一层放有6本不同的语文书,第2层放有5本不同的数学书,第3层放有4本不同的外语书.
(1)从书架中任取1本书,共有多少种不同的取法?
(2)从书架中的第1,2,3层各取1本书,共有多少种不同的取法?
专题10.1 统计(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题10.1 统计(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题101统计原卷版docx、专题101统计解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
专题9.4 双曲线(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.4 双曲线(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题94双曲线原卷版docx、专题94双曲线解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
专题9.3 椭圆(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.3 椭圆(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题93椭圆原卷版docx、专题93椭圆解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。