专题18 尺规作图-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测)
展开知识点01:基础作图
【高频考点精讲】
1、作一条线段等于已知线段(已经线段a)。
(1)步骤
①作射线OP;
②以点O为圆心,a为半径作弧,交OP于点A,则OA即为所求线段。
(2)作图原理:圆上的点到圆心的距离等于半径。
(3)适用情形
①已知三边作三角形;②作圆的内接正六边形。
2、作一个角等于已知角(已知∠α)。
(1)步骤
①以点O为圆心,适当长为半径作弧,分别交∠α的两边于点P、Q;
②作射线O′A;
③以点O′为圆心,OP长为半径作弧,交O′A于点M;
④以点M为圆心,PQ长为半径作弧,交步骤3中的弧于点N;
⑤过点N作射线O′B,则∠AO′B即为所求角。
(2)作图原理
①三边相等的两个三角形全等;
②全等三角形的对应角相等。
(3)适用情形
①过直线外一点作直线与已知直线平行;
②过三角形一边上一点作直线将其分成两个相似三角形。
3、作已知角的角平分线(已知∠AOB)。
(1)步骤
①以点O为圆心,适当长为半径作弧,分别交OA,OB于点N、M;
②分别以点M、N为圆心,以大于1/2MN长为半径作弧,两弧在∠AOB的内部相交于点 P;
③作射线OP,则OP即为所求角的平分线。
(2)作图原理
①三边相等的两个三角形全等;
②全等三角形的对应角相等;
③两点确定一条直线。
(3)适用情形
①作一点使得该点到角两边的距离相等;
②作三角形的内切圆。
4、作已知线段的垂直平分线(已知线段AB)。
(1)步骤
①分别以点A、B为圆心,以大于1/2AB长为半径,在AB两侧作弧,分别交于点M、N;
②过点M、N作直线,直线MN即为所求垂直平分线。
(2)作图原理
①到线段两端点距离相等的点在这条线段的垂直平分线上;
②两点确定一条直线。
(3)适用情形
①过三角形的一个顶点作直线平分三角形的面积;
②过不在同一直线上的三点作圆/作三角形的外接圆;
③作到已知两点距离相等的点。
5、过一点作已知直线的垂线(已知点P和直线l)。
【点P在直线l上】
(1)步骤
①以点P为圆心,适当长为半径作弧,交直线l于A、B两点;
②分别以点A、B为圆心,以大于1/2AB长为半径向直线两侧作弧,两弧分别交于点M、N;
③过点M、N作直线,直线MN即为所求垂线。
(2)作图原理
①到线段两端点距离相等的点在这条线段的垂直平分线上;
②两点确定一条直线。
(4)适用情形
①已知底边上的高线及腰长作等腰三角形;
②过直线外一点作与该直线相切的圆。
【点P在直线l外】
(1)步骤
①任意取一点M,使点M和点P在直线l的两侧;
②以点P为圆心,PM长为半径作弧,交直线l于A、B两点;
③分别以点A、B为圆心,以大于1/2AB长为半径作弧,交点M同侧于点N;
④过点P、N作直线,直线PN即为所求垂线。
(2)作图原理
①到线段两端点距离相等的点在这条线段的垂直平分线上;
②两点确定一条直线。
(3)适用情形
①已知底边上的高线及腰长作等腰三角形;
②过直线外一点作与该直线相切的圆。
知识点02:应用与设计作图
【高频考点精讲】
理解题意,明确作图要求,结合对应几何图形的性质和基本作图的方法进行作图。
检测时间:90分钟 试题满分:100分 难度系数:0.50
一.选择题(共10小题,满分20分,每小题2分)
1.(2分)(2023•德州)如图,在∠AOB中,以点O为圆心,5为半径作弧,分别交射线OA,OB于点C,D,再分别以C,D为圆心,CO的长为半径作弧,两弧在∠AOB内部交于点E,作射线OE,若OE=8,则C,D两点之间的距离为( )
A.5B.6C.D.8
解:连接CE,DE,CD,设CD与OE交于点F,
由作图可知,OC=OD=CE=DE=5,
∴四边形OCED为菱形,
∴CD⊥OE,OF=EF=OE=4,CF=DF,
由勾股定理得,CF==3,
∴CD=2CF=6,
即C,D两点之间的距离为6.
故选:B.
2.(2分)(2023•随州)如图,在▱ABCD中,分别以B,D为圆心,大于BD的长为半径画弧,两弧相交于点M,N,过M,N两点作直线交BD于点O,交AD,BC于点E,F,下列结论不正确的是( )
A.AE=CFB.DE=BFC.OE=OFD.DE=DC
解:根据作图可知:EF垂直平分BD,
∴BO=DO,
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠EDO=∠FBO,
∵∠BOF=∠DOE,
∴△BOF≌△DOE(ASA),
∴BF=DE,OE=OF,故B,C正确;
无法证明DE=CD,故D错误;
故选:D.
3.(2分)(2023•福建)阅读以下作图步骤:
①在OA和OB上分别截取OC,OD,使OC=OD;
②分别以C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点M;
③作射线OM,连接CM,DM,如图所示.
根据以上作图,一定可以推得的结论是( )
A.∠1=∠2且CM=DMB.∠1=∠3且CM=DM
C.∠1=∠2且OD=DMD.∠2=∠3且OD=DM
解:A、以C,D为圆心画弧的半径相等,因此CM=DM,又OC=OD,OM=OM,因此△OCM≌△ODM(SSS)得到∠1=∠2,故A符合题意;
B、因为OC、CM的长在变化,所以OC和CM不一定相等,因此∠1不一定等于∠3,故B不符合题意;
C、因为OD、DM的长在变化,所以OD和DM不一定相等,故C不符合题意;
D、CM的位置在变化,所以CM和OB不一定平行,因此∠2不一定等于∠3,故D不符合题意.
故选:A.
4.(2分)(2023•湖北)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为( )
A.B.C.D.4
解:如图,设BP交CD与点J,交CN与点T.过点J作JK⊥BD于点K.
∵四边形ABCD是矩形,
∴AB=CD=3,∠BCD=90°,
∵CN⊥BT,
∴∠CTB=∠CDN=90°,
∴∠CBT+∠BCM=90°,∠BCT+∠DCN=90°,
∴∠CBT=∠DCN,
∴△BTC∽△CDN,
∴=,
∴BM•CN=CD•CB=3×4=12,
∵∠BCD=90°,CD=3,BC=4,
∴==5,
由作图可知BP平分∠CBD,
∵JK⊥BD,JC⊥BC,
∴JK=JC,
∵S△BCD=S△BDJ+S△BCJ,
∴×3×4=×5×JK+×4×JC,
∴JC=KJ=,
∴BJ===,
∵cs∠CBJ==,
∴=,
∴BT=,
∵CN•BT=12,
∴CN=.
故选:A.
5.(2分)(2023•黄石)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径画弧,两弧相交于E,F两点,EF和BC交于点O;②以点A为圆心,AC长为半径画弧,交AB于点D;③分别以点D,C为圆心,大于CD的长为半径画弧,两弧相交于点M,连接AM,AM和CD交于点N,连接ON.若AB=9,AC=5,则ON的长为( )
A.2B.C.4D.
解:由作图可知EF垂直平分线段BC,AM垂直平分线段CD,
∴OB=OC,DN=CN,
∴ON=BD,
∵AB=9,AC=AD=5,
∴BD=AB﹣AD=9﹣5=4,
∴ON=×4=2.
故选:A.
6.(2分)(2023•贵州)如图,在四边形ABCD中,AD∥BC,BC=5,CD=3.按下列步骤作图:①以点D为圆心,适当长度为半径画弧,分别交DA,DC于E,F两点;②分别以点E,F为圆心以大于的长为半径画弧,两弧交于点P;③连接DP并延长交BC于点G.则BG的长是( )
A.2B.3C.4D.5
解:由题可得,DG是∠ADC的平分线.
∴∠ADG=∠CDG,
∵AD∥BC,
∴∠ADG=∠CGD,
∴∠CDG=∠CGD,
∴CG=CD=3,
∴BG=CB﹣CG=5﹣3=2.
故选:A.
7.(2分)(2023•丹东)如图,在四边形ABCD中,AB∥CD,以点B为圆心,以任意长为半径作弧,分别交AB,BC于点E,F,分别以E,F为圆心,以大于长为半径作弧,两弧在∠ABC内交于点P,作射线BP,交AD于点G,交CD的延长线于点H.若AB=AG=4,GD=5,则CH的长为( )
A.6B.8C.9D.10
解:由作图可知BH平分∠ABC,
∴∠ABH=∠CBH,
∵AB=AG=4,
∴∠ABG=∠AGB,
∴∠AGB=∠CBH,
∴AD∥CB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∴BC=AD=AG+DG=4+5=9,
∵AB∥CH,
∴∠ABG=∠CHB,
∴∠CBH=∠CHB,
∴CH=CB=9.
故选:C.
8.(2分)(2023•湖州)如图,已知∠AOB,以点O为圆心,适当长为半径作圆弧,与角的两边分别交于C,D两点,分别以点C,D为圆心,大于长为半径作圆弧,两条圆弧交于∠AOB内一点P,连结OP,过点P作直线PE∥OA,交OB于点E,过点P作直线PF∥OB,交OA于点F.若∠AOB=60°,OP=6cm,则四边形PFOE的面积是( )
A.cm2B.cm2C.cm2D.cm2
解:过P作PB⊥OB于B,
由作图得:OP平分∠AOB,
∴∠PAB=∠AOP=∠AOB=30°,
∴PB==3cm,
∴OB==3cm,
∵PE∥OA,PF∥OB,
∴四边形AEOF为平行四边形,∠EPO=∠POA=30°,
∴∠POE=∠OPE,
∴OE=PE,
设OE=PE=x cm,
在Rt△PEB中,PE2﹣BP2=EB2,
即:x2﹣32=(3﹣x)2,
解得:x=2,
∴S四边形OEPF=OE•PB=2×3=6(cm).
故选:B.
9.(2分)(2023•衢州)如图,在△ABC中,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E.分别以点D,E为圆心,大于长为半径画弧,交于∠BAC内一点F.连结AF并延长,交BC于点G.连结DG,EG.添加下列条件,不能使BG=CG成立的是( )
A.AB=ACB.AG⊥BCC.∠DGB=∠EGCD.AG=AC
解:根据题中所给的作图步骤可知,
AB是△ABC的角平分线,即∠BAG=∠CAG.
当AB=AC时,又∠BAG=∠CAG,且AG=AG,
所以△ABG≌△ACG(SAS),
所以BG=CG,
故A选项不符合题意.
当AG⊥BC时,
∠AGB=∠AGC=90°,
又∠BAG=∠CAG,且AG=AG,
所以△ABG≌△ACG(ASA),
所以BG=CG,
故B选项不符合题意.
当∠DGB=∠EGC时,
因为∠BAG=∠CAG,AD=AE,AG=AG,
所以△ADG≌△AEG(SAS),
所以∠AGD=∠AGE,
又∠DGB=∠EGC,
所以∠AGD+∠DGB=∠AGE+∠EGC,
即∠AGB=∠AGC.
又∠AGB+∠AGC=90°,
所以∠AGB=∠AGC=90°,
则方法同(2)可得出BG=CG,
故C选项不符合题意.
故选:D.
10.(2分)(2023•河北)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.
(1)作BD的垂直平分线交BD于点O;
(2)连接AO,在AO的延长线上截取OC=AO;
(3)连接DC,BC,则四边形ABCD即为所求.
在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是( )
A.两组对边分别平行B.两组对边分别相等
C.对角线互相平分D.一组对边平行且相等
解:由作图得:DO=BO,AO=CO,
∴四边形ABCD为平行四边形,
故选:C.
二.填空题(共10小题,满分20分,每小题2分)
11.(2分)(2023•甘孜州)如图,在平行四边形ABCD(AB<AD)中,按如下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧在∠BAD内交于点P;③作射线AP交BC于点E.若∠B=120°,则∠EAD为 30 °.
解:由作法得AE平分∠BAD,
∴∠EAB=∠EAD=∠BAD,
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠B+∠BAD=180°,
∴∠BAD=180°﹣120°=60°,
∴∠EAD=∠BAD=30°.
故答案为:30.
12.(2分)(2023•山西)如图,在▱ABCD中,∠D=60°.以点B为圆心,以BA的长为半径作弧交边BC于点E,连接AE.分别以点A,E为圆心,以大于AE的长为半径作弧,两弧交于点P,作射线BP交AE于点O,交边AD于点F,则的值为 .
解:∵四边形ABCD是平行四边形,
∴AD∥BC,∠D=∠ABC=60°,
∴∠BAD=180°﹣60°=120°,
∵BA=BE,
∴△ABE是等边三角形,
∴∠BAE=60°,
∵BF平分∠ABE,
∴AO=OE,BO⊥AE,
∵∠OAF=∠BAD﹣∠BAE=120°﹣60°=60°,
∴tan∠OAF==,
∴=,
故答案为:.
13.(2分)(2023•成都)如图,在△ABC中,D是边AB上一点,按以下步骤作图:
①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;
②以点D为圆心,以AM长为半径作弧,交DB于点M′;
③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;
④过点N′作射线DN′交BC于点E.
若△BDE与四边形ACED的面积比为4:21,则的值为 .
解:由作图知,∠A=∠BDE,
∴DE∥AC,
∴△BDE∽△BAC,
△BAC的面积:△BDE的面积=(△BDE的面积+四边形ACED的面积):△BDE的面积=1+四边形ACED的面积:△BDE的面积=1+=,
∴△BDC的面积:△BAC的面积=()2=,
∴=,
∴=.
故答案为:.
14.(2分)(2023•益阳)如图,在▱ABCD中,AB=6,AD=4,以A为圆心,AD的长为半径画弧交AB于点E,连接DE,分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于点F,作射线AF,交DE于点M,过点M作MN∥AB交BC于点N.则MN的长为 4 .
解:延长NM交AD于点Q,
由作图得:AD=AE=4,AF平分∠BAD,
∴DM=ME,
∴MN∥AB,
∴DQ=AQ,CN=BN,
∴QM=2,
在▱ABCD中,AD∥BC,CD=AB=6,
∴四边形CDQN是平行四边形,
∴QN=CD=AB=6,
∴MN=NQ﹣MQ=6﹣2=4.
故答案为:4.
15.(2分)(2023•广元)如图,a∥b,直线l与直线a,b分别交于B,A两点,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点E,F,作直线EF,分别交直线a,b于点C,D,连接AC,若∠CDA=34°,则∠CAB的度数为 56° .
解:由作图可知CD垂直平分线段AB,
∴CA=CB,
∵CD⊥AB,
∴∠ACD=∠BCD,
∵a∥b,
∴∠ADC=∠BCD=34°,
∴∠ACB=2∠BCD=68°,
∴∠CAB=∠CBA=(180°﹣68°)=56°.
故答案为:56°.
16.(2分)(2023•鞍山)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为 6 .
解:由题中作图可知:CM平分∠ACB,
∴∠ACM=∠BCM,
∵MN⊥BC,BN=CN,
∴MB=MC,
∴∠B=∠BCM,
∴∠ACM=∠B,
∵∠CAM=∠CAB,
∴△ACM∽△ABC,
∴AC:AB=AM:AC,
∵AM=4,BM=5,
∴AB=AM+BM=9,
∴AC:9=4:AC,
∴AC=6.
故答案为:6.
17.(2分)(2023•营口)如图,在△ABC中,以A为圆心,AC长为半径作弧,交BC于C,D两点,分别以点C和点D为圆心,大于CD长为半径作弧,两弧交于点P,作直线AP,交CD于点E.若AC=5,CD=6,则AE= 4 .
解:由作图可知,AD=AC,AE是CD的垂直平分线,
∵CD=6,
∴CE=DE=3,
∵CA=5,
∴AE===4,
故答案为:4.
18.(2分)(2023•东营)如图,在△ABC中,以点C为圆心,任意长为半径作弧,分别交AC,BC于点D,E;分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点F;作射线CF交AB于点G.若AC=9,BC=6,△BCG的面积为8,则△ACG的面积为 12 .
解:如图,过点G作GM⊥AC于点M,GN⊥BC于点N.
由作图可知CG平分∠ACB,
∵GM⊥AC,GN⊥BC,
∴GM=GN,
∵S△BCG=•BC•GN=8,BC=6,
∴GN=,
∴GN=GM=,
∴S△AGC=•AC•GM=×9×=12,
故答案为:12.
19.(2分)(2023•盘锦)如图,四边形ABCD是平行四边形,以点B为圆心,任意长为半径画弧分别交AB和BC于点P,Q,以点P,Q为圆心,大于PQ的长为半径画弧,两弧交于点H,作射线BH交边AD于点E;分别以点A,E为圆心,大于AE的长为半径画弧,两弧相交于M,N两点,作直线MN交边AD于点F,连接CF,交BE于点G,连接GD,若CD=4,DE=1,则= .
解:由作图得:BE平分∠ABC,MN垂直平分AE,
∴∠ABE=∠EBC,AF=EF,
在▱ABCD中,AD∥BC,AD=BC,AB=CD=4,
∴∠AEB=∠EBC,
∴∠AEB=∠ABE,
∴AE=AB=CD=4,
∴AF=EF=2,
∴FD=3DE,BC=AD=5,
S△DEG=x,则S△EFG=2x,S△FDG=3x,
∵AD∥BC,
∴△EFG∽△BCG,
∴=()2=()2=,
S△BCG=12.5x,
∴==,
故答案为:.
20.(2分)(2023•天津)如图,在每个小正方形的边长为1的网格中,等边三角形ABC内接于圆,且顶点A,B均在格点上.
(1)线段AB的长为 ;
(2)若点D在圆上,AB与CD相交于点P,请用无刻度的直尺,在如图所示的网格中,画出点Q,使△CPQ为等边三角形,并简要说明点Q的位置是如何找到的(不要求证明) 取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与
GB的延长线相交于点Q,则点Q即为所求. .
解:(1)AB==.
故答案为:;
(2)如图,点Q即为所求;
方法:取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与GB的延长线相交于点Q,则点Q即为所求;
理由:可以证明∠PCA=∠QCB,∠CBQ=∠CAP=60°,
∵AC=CB,
∴△ACP≌△BAQ(ASA),
∴∠ACP=∠BCQ,CP=CQ,
∴∠PCQ=∠ACB=60°,
∴△PCQ是等边三角形.
故答案为:取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与GB的延长线相交于点Q,则点Q即为所求.
三.解答题(共8小题,满分60分)
21.(6分)(2023•连云港)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D,连接BD,过点C作CE∥AB.
(1)请用无刻度的直尺和圆规作图:过点B作⊙O的切线,交CE于点F;(不写作法,保留作图痕迹,标明字母)
(2)在(1)的条件下,求证:BD=BF.
(1)解:如图:
过B作BF⊥AB,交CE于F,直线BF即为所求直线;
(2)证明:∵AB=AC,
∴∠ABC=∠ACB,
∵AB∥CE,
∴∠ABC=∠BCF,
∴∠BCF=∠ACB,
∵点D在以AB为直径的圆上,
∴∠ADB=90°,
∴∠BDC=90°,
∵BF为⊙O的切线,
∴∠ABF=90°,
∵AB∥CE,
∴∠BFC+∠ABF=180°,
∴∠BFC=90°,
∴∠BDC=∠BFC,
在△BCD和△BCF中,
,
∴△BCD≌△BCF(AAS),
∴BD=BF.
22.(6分)(2023•盐城)如图,AB=AE,BC=ED,∠B=∠E.
(1)求证:AC=AD.
(2)用直尺和圆规作图:过点A作AF⊥CD,垂足为F.(不写作法,保留作图痕迹)
(1)证明:在△ABC和△AED中,
,
∴△ABC≌△AED(SAS),
∴AC=AD;
(2)解:如图AF即为所求.
23.(8分)(2023•广安)如图,将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).
解:如图:
24.(8分)(2023•吉林)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.在图①、图②、图③中以AB为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.
解:如图:
图①△ABC即为所求锐角三角形;
图②△ABD即为所求直角三角形;
图③△ABCF为所求钝角三角形.
25.(8分)(2023•无锡)如图,已知∠APB,点M是PB上的一个定点.
(1)尺规作图:请在图1中作⊙O,使得⊙O与射线PB相切于点M,同时与PA相切,切点记为N;
(2)在(1)的条件下,若∠APB=60°,PM=3,则所作的⊙O的劣弧与PM、PN所围成图形的面积是 3﹣π .
解:(1)如图,⊙O为所作;
(2)∵PM和PN为⊙O的切线,
∴OM⊥PB,ON⊥PN,∠MPO=∠NPO=∠APB=30°,
∴∠OMP=∠ONP=90°,
∴∠MON=180°﹣∠APB=120°,
在Rt△POM中,∵∠MPO=30°,
∴OM=PM=×3=,
∴⊙O的劣弧与PM、PN所围成图形的面积
=S四边形PMON﹣S扇形MON
=2××3×﹣
=3﹣π.
故答案为:3﹣π.
26.(8分)(2023•朝阳)如图1,在▱ABCD中,求作菱形EFGH,使其面积等于▱ABCD的面积的一半,且点E,F,G,H分别在边AD,AB,BC,CD上.
(1)小明所作的四边形EFGH是菱形吗?为什么?
(2)四边形EFGH的面积等于▱ABCD的面积的一半吗?请说明理由.
解:(1)小明所作的四边形EFGH是菱形.
理由如下:
∵四边形ABCD为平行四边形,
∴OA=OC,AB∥CD,
∴∠OAF=∠OCH,
在△AOF和△COH中,
,
∴△AOF≌△COH(ASA),
∴OF=OH,
同理可得OE=OG,
∴四边形EFGH是平行四边形,
∵EG⊥FH,
∴四边形EFGH是菱形;
(2)四边形EFGH的面积等于▱ABCD的面积的一半.
理由如下:
∵FH∥AD,AB∥CD,
∴四边形AFHD为平行四边形,
∴FH=AD,
∵菱形EFGH的面积=FH•EG,平行四边形ABCD的面积=AD•EG,
∴菱形EFGH的面积=平行四边形ABCD的面积的一半.
27.(8分)(2023•深圳)如图,在单位长度为1的网格中,点O,A,B均在格点上,OA=3,AB=2,以O为圆心,OA为半径画圆,请按下列步骤完成作图,并回答问题:
①过点A作切线AC,且AC=4(点C在A的上方);
②连接OC,交⊙O于点D;
③连接BD,与AC交于点E.
(1)求证:DB为⊙O的切线;
(2)求AE的长度.
解:如图:
(1)∵AC是圆的切线,
∴∠OAC=90°,
∴OC=5,
由题意得:OD=AO=3,OB=OC=5,∠AOC=∠DOB,
∴△AOC≌△DOB(SAS),
∴∠ODB=∠OAC=90°,
∵OD是圆的半径,
∴DB为⊙O的切线;
(2)∵∠CDE=∠CAO=90°,∠C=∠C,
∴△CDE∽△CAO,
∴,
即:,
解得:CE=2.5,
∴AE=AC﹣CE=4﹣2.5=1.5.
28.(8分)(2023•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B均在格点上,只用无刻度的尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.
(1)在图①中,△ABC的面积为;
(2)在图②中,△ABC的面积为5;
(3)在图③中,△ABC是面积为的钝角三角形.
解:如图:
(1)如图①:△ABC即为所求;
(2)如图②:△ABC即为所求;
(3)如图③:△ABC即为所求
小明的作法
①如图2,连接AC,BD相交于点O.
②过点O作直线l∥AD,分别交AB,CD于点F,H.
③过点O作l的垂线,分别交AD,BC于点E,G.
④连接EF,FG,GH,HE,则四边形EFGH为所求作的菱形.
专题21 图形的相似-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测): 这是一份专题21 图形的相似-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测),文件包含专题21图形的相似教师版docx、专题21图形的相似学生版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
专题19 命题与证明-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测): 这是一份专题19 命题与证明-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测),文件包含专题19命题与证明教师版docx、专题19命题与证明学生版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
专题12 反比例函数-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测): 这是一份专题12 反比例函数-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测),文件包含专题12反比例函数教师版docx、专题12反比例函数学生版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。