数学八年级下册6.3 反比例函数的应用当堂检测题
展开一、单选题
1.如图,点A是反比例函数图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B,C,则矩形ABOC的面积为( )
A.-4B.2C.4D.8
2.如图,在平面直角坐标系中,矩形ABCD的边BC在轴上,点D的坐标为(-2,6),点B是动点,反比例函数经过点D,若AC的延长线交轴于点E,连接BE,则△BCE的面积为( )
A.6B.5C.3D.7
3.如图,点A是双曲线y=是在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为( )
A.B.C.D.
4.一次函数的图像经过点,两点,P为反比例函数图像上的一个动点,O为坐标原点,过P作y轴的垂线,垂足为C,则的面积为( )
A.2B.4C.8D.不确定
5.如图,在平面直角坐标系中,点是轴正半轴上的一个定点,点是函数的图象上的一个动点,轴于点.当点的纵坐标逐渐增大时,四边形的面积的变化为( )
A.不变B.逐渐增大C.逐渐减小D.先增大后减小
6.如图,已知A(1,a),B(b,1)为反比例函数y=图象上y的两点,动点P在x轴正半轴上运动,当线段AP与线段BP之和最小时,则点P的坐标是( )
A.(,0)B.(1,0)C.(,0)D.(2,0)
7.反比例函数和在第一象限的图象如图所示,点A在函数图象上,点B在函数图象上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为( )
A.1B.2C.3D.4
8.如图,在平面直角坐标系中,矩形的边、分别在轴和轴上,,
,点是边上一动点,过点的反比例函数与边交于点.若将沿折叠,点的对应点恰好落在对角线上. 则反比例函数的解析式是( )
A.B.C.D.
9.如图,在平面直角坐标系中,点是函数在第一象限内图象上一动点,过点分别作轴于点轴于点,分别交函数的图象于点,连接.当点的纵坐标逐渐增大时,四边形的面积( )
A.不变B.逐渐变大C.逐渐变小D.先变大后变小
10.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为( )
A.n=-2mB.n=-C.n=-4mD.n=-
二、填空题
11.如图,已知点是双曲线在第一象限的分支上的一个动点,连接并延长交另一分支于点,过点作轴的垂线,过点作轴的垂线,两垂线交于点,随着点的运动,点的位置也随之变化,设点的坐标为,则,满足的关系式为______.
12.如图,已知点是反比例函数图象上的动点,轴,轴,分别交反比例函数()的图象于点、,交坐标轴于点、,连接.则的面积是______.
13.如图,、是函数上两点,为一动点,作轴,轴,若,则______.
如图,在平面直角坐标系中,已知第一象限上的点A(m,n)是双曲线上的动点,过点A作AM∥y轴交x轴于点M,过点N(0,2n)作NB∥x轴交双曲线于点B,交直线AM于点C,若四边形OACB的面积为4,则k的值为________.
15.如图,在平面直角坐标系xOy中,点A为反比例函数y=-(x>0)的图象上一动点,AB⊥y轴,垂足为B,以AB为边作正方形ABCD,其中CD在AB上方,连接OA,则OA2-OC2=_______.
16.反比例函数和在第一象限的图象如图所示,点A在函数的图象上,点B在函数的图象上,点C是y轴上一个动点,若轴,则的面积是______.
17.如图,点是反比例函数在第二象限内图像上一点,点是反比例函数在第一象限内图像上一点,且轴,为轴上动点,连接、,则的面积是___________.
18.如图,平行于x轴的直线分别交反比例函数和的图像于点A和点B,点C是x轴上的动点,则的面积为__________.
19.如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y 的图象上,则 k 的值为________.
20.如图,□的顶点的坐标为,在第一象限反比例函数和的图象分别经过两点,延长交轴于点. 设是反比例函数图象上的动点,若的面积是面积的2倍,的面积等于,则的值为________.
三、解答题
21.在矩形中,,分别以、在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与、合),过点的反比例函数的图像与边交于点.
(1) 求证:与的面积相等;
(2) 记,求当为何值时,有最大值,最大值是多少?
22.如图,点在反比例函数的图象上,轴,且交y轴于点C,交反比例函数的图象于点B,已知.
求反比例函数的解析式;
点D为反比例函数图象上一动点,连接交y轴于点E,当E为中点时,求的面积.
23.如图,在平面直角坐标系中,直线y=k1x+b与反比例函数y=的图象交于A、B两点,已知A(1,2),B(m,1).
(1) 求m的值及直线AB的解析式;
(2) 若点P是直线AB上的一动点,将直线AB向下平移n个单位长度(0<n<3),平移后直线与x轴、y轴分别交于点D、E,当△PED的面积为1时,求n的值.
24.直线与反比例函数的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.
(1) 求直线AB的解析式;
(2) 观察图象,当时,直接写出的解集;
(3) 若点P是x轴上一动点,当△ADP的面积是6时,求出P点的坐标.
25.已知,如图,正比例函数y=ax的图象与反比例函数图象交于A点(3,2),
(1)试确定上述正比例函数和反比例函数的表达式.
(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?
(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
26.已知:在矩形中,.分别以所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B,C重合),过F点的反比例函数的图象与AC边交于点E.
(1)记,当S取得最大值时,求k的值;
答案
一、单选题
1.C 2.A 3.D 4.A 5.B 6.C 7.A 8.C 9.A 10.B
二、填空题
11.
12..
13.
14.4
15.8
16.0.5
17.
18.3
19.−3
20.6.4
三、解答题
21.
解:(1)证明:设,,的面积为,的面积为,
∵,都在反比例函数的图像上,
∴,,则,,
∴,,
∴.
(2)解:根据题意可知,,,
∴,
∴,即,
∴,即,
∴当时,有最大面积,最大面积为.
22.
(1)解:∵点在反比例函数的图象上,
∴.
∴a=2.
∴.
∵轴,且交y轴于点C,
∴.
∵,
∴.
∴.
∴把点B坐标代入得.
∴.
∴该反比例函数的解析式为.
(2)解:设.
∵,点E为的中点,
∴.
∵点E在y轴上,
∴.
∴.
∴,.
∴.
∴,.
∴.
∴△OAD的面积为3.
23.
(1)解:反比例函数y=的图象过点A,
则k2=1×2=2,
故反比例函数的表达式为:y=;
点B(m,1)在该函数上,
故m×1=2,解得:m=2,
故点B(2,1);
将点A、B的坐标代入一次函数表达式得:
,解得,
故一次函数的表达式为y=-x+3;
(2)解:连接PO,
设点P(m,3-m),平移后直线的表达式为:y=-x+3-n,
令x=0,则y=3-n,令y=0,则x=3-n,
即点D、E的坐标分别为(3-n,0)、(0,3-n),即OD=OE=3-n,
△PED的面积=S四边形PDOE-S△ODE=S△OPD+S△OPE-S△OED
=×OD×xP+×OE×yP-×OD×OE
=×(3-n)(3-m+m)−(3-n)2=1,
整理得:n2-3n+2=0,
解得:n=2或1.
24.
解:(1)点和点在图象上,
,,
即,
把,两点代入中得
解得:,
所以直线的解析式为:
(2)由图象可得,当时,的解集为
(3)由(1)得直线AB的解析式为,
当时,,
点坐标为
设P点坐标为,则
ADP的面积是6
×4×PD=6
PD=3
解得或
P的坐标为或
因此,点P的坐标为或时,ADP的面积是6.
25.
解:(1)∵将分别代入,中,
得,,∴,,
∴反比例函数的表达式为:,
正比例函数的表达式为.
(2)∵
观察图象,得在第一象限内,
当时,反比例函数的值大于正比例函数的值;
(3)
理由:∵轴,轴,∴四边形OCDB是平行四边形,
∵x轴轴,∴是矩形.
∵M和A都在双曲线上,
∴,,
∴,又∵,
∴,
即,
∵,∴,即
∴,∴,,
∴.
26.
解:(1)∵OB=4,OA=3,且E、F为反比例函数图象上的两点,
∴E,F两点坐标分别为E(,3),F(4,),
如图,连接OE、OF,
∴S△ECF=(4−)(3−),
∴S△EOF=S矩形AOBC−S△AOE−S△BOF−S△ECF=3×4−××3−×4×−S△ECF,
∴S△EOF=12−k−S△ECF,
∴S=S△OEF−S△ECF=12−k−2S△ECF=12−k−2×(4−)(3−),
∴S=−k2+k.
当k=时,S有最大值,
即S取得最大值时k=6.
初中数学浙教版八年级下册6.3 反比例函数的应用同步训练题: 这是一份初中数学浙教版八年级下册<a href="/sx/tb_c94372_t7/?tag_id=28" target="_blank">6.3 反比例函数的应用同步训练题</a>,共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学浙教版八年级下册第六章 反比例函数6.3 反比例函数的应用课后测评: 这是一份初中数学浙教版八年级下册<a href="/sx/tb_c94372_t7/?tag_id=28" target="_blank">第六章 反比例函数6.3 反比例函数的应用课后测评</a>,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
浙教版八年级下册第六章 反比例函数6.3 反比例函数的应用课后测评: 这是一份浙教版八年级下册<a href="/sx/tb_c94372_t7/?tag_id=28" target="_blank">第六章 反比例函数6.3 反比例函数的应用课后测评</a>,共13页。试卷主要包含了单选题,四象限D.当时,y有最小值为,解答题等内容,欢迎下载使用。