初中人教版13.3.1 等腰三角形图片ppt课件
展开1 .掌握等腰三角形的判定方法.(重点)2.掌握等腰三角形的判定定理,并运用其进行证明和计算.(难点)
在△ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形画出来?
如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得∠B=∠C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?
如图,在△ABC中, ∠B=∠C,那么它们所对的边AB和AC有什么数量关系?
做一做:画一个△ABC,其中∠B=∠C=30°,请你量一量AB与AC的长度,它们之间有什么数量关系,你能得出什么结论?
在△ABD与△ACD,
∴ △ABD ≌ △ACD.
过A作AD平分∠BAC交BC于点D.
∴ AC=AB. ( )即△ABC为等腰三角形.
∵∠B=∠C, ( )
如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简写成“等角对等边”).
错,因为都不是在同一个三角形中.
辨一辨:如图,下列推理正确吗?
例1 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.
已知: 如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
证明:∵AD∥BC, ∴∠1=∠B(两直线平行,同位角相等), ∠2=∠C(两直线平行,内错角相等). 又∵∠1=∠2, ∴∠B=∠C, ∴AB=AC(等角对等边).
例2 已知:如图,AD∥BC,BD平分∠ABC. 求证:AB=AD
证明:∵ AD∥BC, ∴∠ADB=∠DBC. ∵ BD平分∠ABC, ∴∠ABD=∠DBC, ∴∠ABD=∠ADB, ∴AB=AD.
总结:平分角+平行=等腰三角形
如图,把一张长方形的纸沿着对角线折叠,重合部分是一个等腰三角形吗?为什么?
由折叠可知,∠EBD=∠CBD.
∵AD∥BC,∴∠EDB=∠CBD,
∴∠EDB=∠EBD,∴BE=DE,△EBD是等腰三角形.
练一练:1.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形 的是( ) A. ∠A=50°,∠B=70° B. ∠A=70°,∠B=40° C. ∠A=30°,∠B=90° D. ∠A=80°,∠B=60°
2.如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于_______.
例3 已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.
作法:1.作线段AB=a. 2.作线段AB的垂直平分线MN,交AB于点D. 3.在MN上取一点C,使DC=h. 4.连接AC,BC,则△ABC即为所求.
例4 如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.
证明:∵在△ABC中,∠ACB=90°, ∴∠B+∠BAC=90°. ∵CD是AB边上的高,∴∠ACD+∠BAC=90°, ∴∠B=∠ACD. ∵AE是∠BAC的平分线,∴∠BAE=∠EAC, ∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE, ∴CE=CF,∴△CEF是等腰三角形.
方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.
例5 如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分线交于点O.过O作EF∥BC交AB于E,交AC于F. 探究EF、BE、FC之间的关系.
解:EF=BE+CF.理由如下:∵ EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO. ∵ BO、CO分别平分∠ABC、∠ACB, ∴∠CBO=∠ABO,∠BCO=∠ACO,∴∠EOB=∠ABO ,∠FOC=∠ACO,∴BE=OE,CF=OF,∴ EF=EO+FO=BE+CF.
方法总结:判定线段之间的数量关系,一般做法是通过全等或利用“等角对等边”,运用转化思想,解决问题.
注意是指同一个三角形中
有两边相等的三角形是等腰三角形
1.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的平分线,则图中的等腰三角形有( )A.5个 B.4个 C.3个 D.2个
2.一个三角形的一个外角为130°,且它恰好等于一个不相邻的内角的2倍.这个三角形是( )A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形
3.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有( )A.1个 B.2个 C.3个 D.4个
解析:(1)以O 为圆心OA长为半径画弧,与直线b有两个交点;(2)以A为圆心OA长为半径画弧,与直线b有一个交点;(3)作线段OA的垂直平分线,与直线b有一个交点
4.如图,已知∠A=36°,∠ABD=36°,∠C=72°,则∠DBC=_____,∠BDC=_____,图中的等腰三角形有_______________________.
5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为_____.
6.如图,上午10 时,一条船从A处出发以20海里每小时的速度向正北航行,中午12时到达B处,从A、B望灯塔 C,测得∠NAC=40°,∠NBC=80°.求从B处到灯塔C的距离.
解:∵∠NBC=∠A+∠C, ∴∠C=80°- 40°= 40°, ∴ ∠C = ∠A, ∴ BA=BC(等角对等边). ∵AB=20×(12-10)=40(海里), ∴BC=40海里. 答:B处距离灯塔C40海里.
数学八年级上册13.3.1 等腰三角形课文内容ppt课件: 这是一份数学八年级上册13.3.1 等腰三角形课文内容ppt课件,共14页。PPT课件主要包含了观察与思考,∠B∠C,几何语言,∵ABAC,∴∠B∠C,°40°,或55°55°,∠1∠2,BDCD,AD⊥BC等内容,欢迎下载使用。
数学八年级上册13.3.1 等腰三角形示范课课件ppt: 这是一份数学八年级上册13.3.1 等腰三角形示范课课件ppt,共17页。PPT课件主要包含了判断正误口答,课堂小结等内容,欢迎下载使用。
初中数学人教版八年级上册13.3.1 等腰三角形习题课件ppt: 这是一份初中数学人教版八年级上册13.3.1 等腰三角形习题课件ppt,共26页。