备考特训湖南省中考数学第一次模拟试题(含答案及解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
A.B.C.D.
2、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
A.B.
C.D.
3、已知单项式5xayb+2的次数是3次,则a+b的值是( )
A.1B.3C.4D.0
4、如图,AD为的直径,,,则AC的长度为( )
A.B.C.4D.
5、有理数 m、n 在数轴上的位置如图,则(m+n)(m+2n)(m﹣n)的结果的为( )
A.大于 0B.小于 0C.等于 0D.不确定
6、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个B.3个C.4个D.5个
7、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
8、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.y随x的增大而增大
C.当时,D.关于x的方程的解是
9、若把边长为的等边三角形按相似比进行缩小,得到的等边三角形的边长为( )
A.B.C.D.
10、有理数在数轴上对应点的位置如图所示,下列结论中正确是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,等边边长为4,点D、E、F分别是AB、BC、AC的中点,分别以D、E、F为圆心,DE长为半径画弧,围成一个曲边三角形,则曲边三角形的周长为______.
2、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=(k≠0)的图象,与大正方形的一边交于点A(,4),且经过小正方形的顶点B.求图中阴影部分的面积为 _____.
3、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
(1)由图2可得等式:________;
(2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
4、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.
5、已知关于x的一元二次方程.若此方程有两个相等的实数根,则实数k的值为______;若此方程有两个实数根,则实数k的取值范围为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知函数y1=x+1的图像与y轴交于点A,一次函数y2=kx+b的图像经过点B(0,-1),并且与x轴以及y1=x+1的图像分别交于点C、D,点D的横坐标为1.
(1)求y2函数表达式;
(2)在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.
(3)若一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.求函数y3=mx+n的表达式.
2、如图,D、E、F分别是△ABC各边的中点,连接DE、DF、CD.
(1)若CD平分∠ACB,求证:四边形DECF为菱形;
(2)连接EF交CD于点O,在线段BE上取一点M,连接OM交DE于点N.已知CE=a,CF=b,EM=c,求EN的值.
3、阅读理解题
在求两位数乘两位数时,可以用“列竖式”的方法进行速算,例如:
你能理解上述三题的解题思路吗?理解了,请完成:如图给出了部分速算过程,可得 , , , , , .
4、解方程:.
5、某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.
(1)请用含x的式子表示空白部分长方形的面积;(要化简)
(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.
-参考答案-
一、单选题
1、D
【分析】
根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
【详解】
解:在△AEF和△ABC中,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
∴△AEF≌△ABC(SAS),
∴AF=AC,∠AFE=∠C,
∴∠C=∠AFC,
∴∠EFC=∠AFE+∠AFC=2∠C.
故选:D.
【点睛】
本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
2、B
【分析】
根据增长率问题的计算公式解答.
【详解】
解:第2年的销售量为,
第3年的销售量为,
故选:B.
【点睛】
此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
3、A
【分析】
根据单项式的次数的概念求解.
【详解】
解:由题意得:a+b+2=3,
∴a+b=1.
故选:A.
【点睛】
本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
4、A
【分析】
连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出.
【详解】
解:连接CD
∵
∴AC=DC
又∵AD为的直径
∴∠ACD=90°
∴
∴
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:A.
【点睛】
本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.
5、A
【分析】
从数轴上看出,判断出,进而判断的正负.
【详解】
解:由题意知:
∴
∴
故选A.
【点睛】
本题考查了有理数加减的代数式正负的判断.解题的关键在于正确判断各代数式的正负.
6、C
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
7、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
8、D
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
9、A
【分析】
直接根据位似图形的性质求解即可
【详解】
解:∵把边长为的等边三角形按相似比进行缩小,
∴得到的新等边三角形的边长为:
故选:A
【点睛】
本题主要考查了根据位似图形的性质求边长,熟练掌握位似图形的性质是解答本题的关键.
10、C
【分析】
利用数轴,得到,,然后对每个选项进行判断,即可得到答案.
【详解】
解:根据数轴可知,,,
∴,故A错误;
,故B错误;
,故C正确;
,故D错误;
故选:C
【点睛】
本题考查了数轴,解题的关键是由数轴得出,,本题属于基础题型.
二、填空题
1、
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
证明△DEF是等边三角形,求出圆心角的度数,利用弧长公式计算即可.
【详解】
解:连接EF、DF、DE,
∵等边边长为4,点D、E、F分别是AB、BC、AC的中点,
∴是等边三角形,边长为2,
∴∠EDF=60°,
弧EF的长度为,同理可求弧DF、DE的长度为,
则曲边三角形的周长为;
故答案为:.
【点睛】
本题考查了等边三角形的性质与判定和弧长计算,中位线的性质,解题关键是熟记弧长公式,正确求出圆心角和半径.
2、40
【解析】
【分析】
根据待定系数法求出即可得到反比例函数的解析式;利用反比例函数系数的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积大正方形的面积小正方形的面积即可求出结果.
【详解】
解:反比例函数的图象经过点,
,
反比例函数的解析式为;
小正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,
设点的坐标为,
反比例函数的图象经过点,
,
,
小正方形的面积为,
大正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,且,
大正方形在第一象限的顶点坐标为,
大正方形的面积为,
图中阴影部分的面积大正方形的面积小正方形的面积.
【点睛】
本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数的几何意义,正方形的性质,熟练掌握反比例函数系数的几何意义是解决问题的关键.
3、 2
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
(1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
(2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
【详解】
解:(1)方法一:图形的面积为,
方法二:图形的面积为,
则由图2可得等式为,
故答案为:;
(2),
,
,
利用(1)的结论得:,
,
,即,
,
,
故答案为:2.
【点睛】
本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
4、35°##35度
【解析】
【分析】
根据方向角的表示方法可得答案.
【详解】
解:如图,
∵城市C在城市A的南偏东60°方向,
∴∠CAD=60°,
∴∠CAF=90°-60°=30°,
∵∠BAC=155°,
∴∠BAE=155°-90°-30°=35°,
即城市B在城市A的北偏西35°,
故答案为:35°.
【点睛】
本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、 9
【解析】
【分析】
根据根的判别式的意义得Δ=62-4k=0,解方程即可;根据根的判别式的意义得Δ=62-4k≥0,然后解不等式即可.
【详解】
解:Δ=62-4k=36-4k,
∵方程有两个相等的实数根,
∴Δ=36-4k=0,
解得:k=9;
∵方程有两个实数根,
∴Δ=36-4k≥0,
解得:k≤9;
故答案为:9;k≤9.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.
三、解答题
1、(1)y=3x−1;(2)(0,5),(0,−1−),(0,−1),(0,).
(3)y3=x+或y3=x.
【分析】
(1)把D坐标代入y=x+1求出n的值,确定出D坐标,把B与D坐标代入y=kx+b中求出k与b的值,确定出直线BD解析式;
(2)如图所示,设P(0,p)分三种情况考虑:当BD=PD;当BD=BP时;当BP=DP时,分别求出p的值,确定出所求即可;
(3)先求出四边形AOCD的面积,再分情况讨论即可求解.
【详解】
解:(1)把D坐标(1,n)代入y=x+1中得:n=2,即D(1,2),
把B(0,−1)与D(1,2)代入y=kx+b中得:,
解得:,
∴直线BD解析式为y=3x−1,
即y2函数表达式为y=3x−1;
(2)如图所示,设P(0,p)分三种情况考虑:
当BD=PD时,可得(0−1)2+(−1−2)2=(0−1)2+(p−2)2,
解得:p=5或p=−1(舍去),此时P1(0,5);
当BD=BP时,可得(0−1)2+(−1−2)2=(p+1)2,
解得:p=−1±,
此时P2(0,−1+),P3(0,−1− );
当BP=DP时,可得(p+1)2=(0−1)2+(p−2)2,
解得:p=,即P4(0,),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上,P的坐标为(0,5),(0,−1−),(0,−1),(0,).
(3)对于直线y=x+1,令y=0,得到x=−1,即E(−1,0);令x=0,得到y=1,
∴A(0,1)
对于直线y=3x−1,令y=0,得到x=,即C(,0),
则S四边形AOCD=S△DEC−S△AEO=××2− ×1×1=
∵一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.
①设一次函数y3=mx+n的图像与y轴交于Q1点,
∴S△ADQ1=S四边形AOCD=
∴
∴AQ1=
∴Q1(0,)
把D(1,2)、Q1(0,)代入y3=mx+n得
解得
∴y3=x+;
②设一次函数y3=mx+n的图像与x轴交于Q2点,
∴S△CDQ2=S四边形AOCD=
∴
∴CQ2=
∴Q2(,0)
把D(1,2)、Q2(,0)代入y3=mx+n得
解得
∴y3=x;
综上函数y3=mx+n的表达式为y3=x+或y3=x.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.
2、
(1)见解析
(2)EN=
【分析】
(1)根据三角形的中位线定理先证明四边形为平行四边形,再根据角平分线平行证明一组邻边相等即可;
(2)由(1)得,所以要求的长,想到构造一个“ “字型相似图形,进而延长交于点,先证明,得到,再证明,然后根据相似三角形对应边成比例,即可解答.
(1)
证明:、、分别是各边的中点,
,是的中位线,
,,
四边形为平行四边形,
平分,
,
,
,
,
,
四边形为菱形;
(2)
解:延长交于点,
,
,,,
四边形为平行四边形,
,
,
,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
.
【点睛】
本题考查了菱形的判定与性质,三角形的中位线定理,相似三角形的判定与性质,解题的关键是根据题目的已知并结合图形.
3、能,4,8,2,8,7,4
【分析】
根据表格发现规律:“第二行的前两格是两个两位数的十位数字相乘得到的结果,积如果是一位数前面补0,第二行的后两格是两个两位数的个位数字相乘得到的结果,积如果是一位数前面补0,第三行的前三格是第一个两位数字的个位数字乘以第二个两位数的十位数字再加上第二个两位数的十位数字乘以第二个两位数的个位数字,第四行,同列的两个数相加,如果大于9,进一位.”即可得到答案.
【详解】
由题意得,
第二行的前两格是两个两位数的十位数字相乘得到的结果,积如果是一位数前面补0;
第二行的后两格是两个两位数的个位数字相乘得到的结果,积如果是一位数前面补0;
第三行的前三格是第一个两位数字的个位数字乘以第二个两位数的十位数字再加上第二个两位数的十位数字乘以第二个两位数的个位数字,如第二个表格:;
第四行,同列的两个数相加,如果大于9,进一位,
∵,
,
,
,
,,,,,,
故答案为4,8,2,8,7,4.
【点睛】
本题属于与有理数乘法有关的规律探索题,根据表格发现规律是解决问题的关键.
4、
【分析】
去分母,移项合并同类项,系数化为1即可求解.
【详解】
.
去分母得:.
去括号得:
移项合并同类项得:.
系数化为1得:.
【点睛】
本题考查一元一次方程的解法,先去分母、移项合并、化系数为1.属于基础题.
5、
(1)
(2)超过,理由见解析
【分析】
(1)空白部分长方形的两条边长分别是(30-2x)m,(20-x)m.得空白部分长方形的面积;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)通过有理数的混合运算得结果与400进行比较.
(1)
空白部分长方形的两条边长分别是(30-2x)m,(20-x)m.
空白部分长方形的面积:(30-2x)(20-x)=(2x2-70x+600) m2.
(2)
超过.
∵2×22-70×2+600=468(m2),
∵468>400,
∴空白部分长方形面积能超过400 m2.
【点睛】
本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.
备考特训湖南省株洲市中考数学第三次模拟试题(含答案及解析): 这是一份备考特训湖南省株洲市中考数学第三次模拟试题(含答案及解析),共29页。试卷主要包含了和按如图所示的位置摆放,顶点B,抛物线的顶点为,一元二次方程的根为,已知,则的补角等于等内容,欢迎下载使用。
备考2023徐州中考数学·提优特训一规律探索题(有解析): 这是一份备考2023徐州中考数学·提优特训一规律探索题(有解析),共9页。试卷主要包含了17,2016,17,2017等内容,欢迎下载使用。
2022年湖南省娄底市中考数学考前特训模拟测试题(word版含答案): 这是一份2022年湖南省娄底市中考数学考前特训模拟测试题(word版含答案),共17页。