还剩35页未读,
继续阅读
所属成套资源:湖南省中考数学模拟试卷(17份试卷含答案解析)
成套系列资料,整套一键下载
备考特训湖南省湘潭市中考数学第一次模拟试题(含答案详解)
展开这是一份备考特训湖南省湘潭市中考数学第一次模拟试题(含答案详解),共38页。试卷主要包含了下列等式变形中,不正确的是,下列运算正确的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
A.16B.19C.24D.36
2、下列计算中,正确的是( )
A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
3、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
A.1B.2C.3D.0
4、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
5、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
A.3631B.4719C.4723D.4725
6、下列等式变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
7、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
8、下列运算正确的是( )
A.B.C.D.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
9、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
10、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7B.6C.5D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.
2、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.
3、下列各数①-2.5,②0,③,④,⑤,⑥-0.52522252225…,是无理数的序号是______.
4、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.
5、与是同类项.则常数n的值为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,方格纸中每个小正方形的边长为1,点A、B、C均为格点.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)根据要求画图:①过点C画;②过点C画,垂足为D;
(2)图中线段______的长度表示点A到直线CD的距离;
(3)比较线段CA、CD的大小关系是______.
2、如图,已知△ABC.
(1)请用尺规完成以下作图:延长线段BC,并在线段BC的延长线上截取CD=AC,连接AD;在BD下方,作∠DBE=∠ADB;
(2)若AB=AC,利用(1)完成的图形,猜想∠ABE与∠DBE存在的数量关系,并证明你的结论;
(3)若AB=AC=3,BC=4,利用(1)完成的图形,计算AD的长度.
3、在等腰中,,,点在直线上.
(1)如图1所示,点在上,点是的中点,连接.若,,求的周长;
(2)如图2所示,点在的延长线上,连接,过点作的垂线交于点.点在上,于点,连接.若,,求证:;
(3)如图3所示,点、在边上,连接、,,点是的中点,连接,与交于点.将沿着翻折,点的对应点是点,连接.若,,请直接写出的面积.
4、已知四边形 是菱形, , 点 在射线 上, 点 在射线 上,且 .
(1)如图, 如果 , 求证: ;
(2)如图, 当点 在 的延长线上时, 如果 , 设 , 试建立 与 的函数关系式,并写出 的取值范围
(3)联结 , 当 是等腰三角形时,请直接写出 的长.
5、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
图1 图2
(1)如图1,求证:;
(2)如图2,若,,求的值;
(3)如图1,当,,求时,求的值.
-参考答案-
一、单选题
1、C
【分析】
分别求出各视图的面积,故可求出表面积.
【详解】
由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
故表面积为2×(4+3+5)=24
故选C.
【点睛】
此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
2、C
【分析】
根据整式的加减及幂的运算法则即可依次判断.
【详解】
A. a2+a3不能计算,故错误;
B. a•a=a2,故错误;
C. a•3a2=3a3,正确;
D. 2a3﹣a=2a2不能计算,故错误;
故选C.
【点睛】
此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
3、B
【分析】
证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
【详解】
解:∵与都是以A为直角顶点的等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴,故①正确;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠ACE+∠DBC=45°,
∵,
∴,
∴不成立,故②错误;
设BD交CE于M,
∵∠ACE+∠DBC=45°,∠ACB=45°,
∴∠BMC=90°,
∴,故③正确,
故选:B.
【点睛】
此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
4、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
5、D
【分析】
根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
【详解】
解:∵x1=8,
∴x2=f(8)=4,
x3=f(4)=2,
x4=f(2)=1,
x5=f(1)=4,
…,
从x2开始,每三个数循环一次,
∴(2022-1)÷3=6732,
∵x2+x3+x4=7,
∴=8+673×7+4+2=4725.
故选:D.
【点睛】
本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
6、D
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据等式的性质即可求出答案.
【详解】
解:A.a=b的两边都加5,可得a+5=b+5,原变形正确,故此选项不符合题意;
B.a=b的两边都除以3,可得,原变形正确,故此选项不符合题意;
C.的两边都乘6,可得,原变形正确,故此选项不符合题意;
D.由|a|=|b|,可得a=b或a=−b,原变形错误,故此选项符合题意.
故选:D.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.
7、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
8、C
【分析】
根据合并同类项法则解答即可.
【详解】
解:A、3x和4y不是同类项,不能合并,故A选项错误;
B、,故B选项错误;
C、,故C选项正确;
D、,故D选项错误,
故选:C.
【点睛】
本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
9、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
这两条直线平行.
10、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
二、填空题
1、
【解析】
【分析】
先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.
【详解】
根据图形可以知道,黑棋①的位置应该表示为
故答案为:
【点睛】
此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.
2、 (4,2) (0,4)或(0,-4)
【解析】
【分析】
根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,
∴点D的坐标为(4,2);
同理可得点C的坐标为(0,2),
∴OC=2,
∵A(-1,0),B(3,0),
∴AB=4,
∴,
设点P到AB的距离为h,
∴S△PAB=×AB×h=2h,
∵S△PAB=S四边形ABDC,
得2h=8,解得h=4,
∵P在y轴上,
∴OP=4,
∴P(0,4)或(0,-4).
故答案为:(4,2);(0,4)或(0,-4).
【点睛】
本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
3、③
【解析】
【分析】
根据无理数的定义逐个判断即可.
【详解】
解:-2.5,是分数;-0.52522252225…是无限循环小数,是有理数;0,是整数;无理数有,
故答案为:③.
【点睛】
本题考查了无理数的定义,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.
4、
【解析】
【分析】
画出树状图分析,找出可能出现的情况,再计算即可.
【详解】
解:画树形图如下:
从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种,
所以两人手势不相同的概率=,
故答案为:.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.
5、
【解析】
【分析】
所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念可得答案.
【详解】
解: 与是同类项,
故答案为:
【点睛】
本题考查的是同类项的概念,掌握“利用同类项的概念求解字母指数的值”是解本题的关键.
三、解答题
1、
(1)见解析
(2)AD
(3)CA大于CD
【分析】
(1)根据题意画图即可;
(2)根据点A到直线CD的距离是垂线段AD长,即可填空;
(3)根据垂线段最短即可填空.
(1)
解:①如图所示,直线即为所求
②直线EF和点D即为所求;
(2)
解:点A到直线CD的距离是垂线段AD长,
故答案为:AD.
(3)
解:根据垂线段最短可知,CA大于CD,
故答案为:CA大于CD.
【点睛】
本题考查了画平行线和垂线,垂线的性质,点的直线的距离,解题关键是熟练画图,准确掌握垂线段最短的性质.
2、
(1)作图见解析
(2),证明见解析
(3)
【分析】
(1)根据作一条线段等于已知线段,作一个角等于已知角的步骤,逐步作图即可;
(2)根据等边对等角证明结合三角形的外角的性质证明:再结合已知条件可得结论;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)如图,过A作于K,理由等腰三角形的性质与勾股定理分别求解 再可以勾股定理求解即可.
(1)
解:如图,①延长BC,在射线BC上截取 连接AD,
②以D为圆心,任意长为半径画弧,交于
③以B为圆心,DP为半径画弧,交BC于H,
④以H为圆心,PQ为半径画弧,与前弧交于点E,
再作射线BE即可.
(2)
解:;理由如下;
(3)
解:如图,过A作于K,
【点睛】
本题考查的是作一条线段等于已知线段,作一个角等于已知角,等腰三角形的性质,勾股定理的应用,三角形的外角的性质,熟练的运用等边对等角是解本题的关键.
3、
(1)
(2)见解析
(3)
【分析】
(1)过点作于点,根据,设,则,进而根据等腰直角三角形的性质表示出,根据勾股定理求得,进而求得的值,即可求得的周长;
(2)过点作,垂足为,证明,设交于点,过点作交于,连接,证明四边形,是平行四边形,可得,又,进而即可得证;
(3)过点作,连接,延长交于点,连接,,根据翻折的性质可得· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,点是的中点,,,可得,根据等底同高,进而证明,即可得则,根据相似三角形的性质以及正弦的定义可得,再根据相似三角形的性质可得,进而即可求得
(1)
如图,过点作于点,
,,
设,则
在中,
是的中点
在中,,,
在中,
的周长为
的周长为
(2)
如图,过点作,垂足为,
在中,,,
,,
在与中
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设交于点,过点作交于,连接,如图,
是的高,
垂直平分
,
,
又
又
又
四边形是平行四边形
又
四边形是平行四边形
(3)
如图,过点作,连接,延长交于点,连接,,
翻折
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,
点是的中点,
,
,
又
设
,
是的中点,
在中,
如图,过点作
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
又是的中点,
又
是的中点,是的中点
,为的中点
设,则,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了解直角三角形,平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质与判定,轴对称的性质,勾股定理,相似三角形的性质与判定,掌握等腰直角三角形的性质,相似三角形的性质与判定是解题的关键.
4、
(1)证明过程详见解答;
(2)
(3)或
【分析】
(1)先证明四边形是正方形,再证明,从而命题得证;
(2)在上截取,先证明是正三角形,再证明,进一步求得结果;
(3)当时,作于,以为圆心,为半径画弧交于,作于,证明,,可推出,再证明,可推出,从而求得,当时,作于,以为圆心,为半径画弧交于,作于,作于,先根据求得,进而求得,根据,,和,从而求得,根据三角形三边关系否定,从而确定的结果.
(1)
解:证明:四边形是菱形,,
菱形是正方形,
,,
,
,
;
(2)
解:如图1,
在上截取,
四边形是菱形,
,,
是正三角形,
,,
,,
,
,
,
;
(3)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
如图2,
当时,作于,以为圆心,为半径画弧交于,作于,
,,,,
,
四边形是菱形,
,
,,
,
①,
,
,
,
②,
由①②得,
,
,
如图3,
当时,作于,以为圆心,为半径画弧交于,作于,
作于,
,
,
由得,
,
,
,
由第一种情形知:,,
,,
①,②,
由①②得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
,
即,
综上所述:或.
【点睛】
本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.
5、
(1)证明见解析
(2)
(3)
【分析】
(1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
(2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
(3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
(1)
解:∵四边形EFGH是平行四边形
∴
∴
∵四边形ABCD是平行四边形
∴
∴
在和中
∴
∴
∴
∴;
(2)
解:如图所示,作于M点,设
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵四边形和四边形都是平行四边形,
∴四边形和四边形都是矩形
∴
∴
∵
∴,
∴
∴
∴
∵
∴
由(1)得:
∴
∴;
(3)
解:如图所示,过点E作于M点
∵四边形ABCD是平行四边形
∴
∵
∴,即
∵
∴
∴
∴
∴
设
∵
∴
∴
∴
由(1)得:
∴
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
过点E作,交BD于N
∵
∴
∴
∴
设
∴
∴
∵
∴
∵
∴
∴
∵
∴
∴
∴
解得:或(舍去)
∴
由勾股定理得:
∴.
【点睛】
此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
相关试卷
备考特训湖南省汨罗市中考数学模拟真题 (B)卷(含答案及详解):
这是一份备考特训湖南省汨罗市中考数学模拟真题 (B)卷(含答案及详解),共25页。试卷主要包含了如图,点B等内容,欢迎下载使用。
备考特训湖南省邵阳县中考数学模拟定向训练 B卷(含答案及解析):
这是一份备考特训湖南省邵阳县中考数学模拟定向训练 B卷(含答案及解析),共27页。试卷主要包含了单项式的次数是等内容,欢迎下载使用。
备考特训湖南省武冈市中考数学备考模拟练习 (B)卷(含答案及解析):
这是一份备考特训湖南省武冈市中考数学备考模拟练习 (B)卷(含答案及解析),共23页。试卷主要包含了生活中常见的探照灯,如图,下列条件中不能判定的是,下列方程变形不正确的是等内容,欢迎下载使用。