年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案详解)

    【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案详解)第1页
    【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案详解)第2页
    【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案详解)

    展开

    这是一份【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案详解),共29页。试卷主要包含了如图,下列条件中不能判定的是,如图,等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列不等式中,是一元一次不等式的是( )
    A.B.C.D.
    2、下面四个立体图形的展开图中,是圆锥展开图的是( ).
    A.B.C.D.
    3、若和是同类项,且它们的和为0,则mn的值是( )
    A.-4B.-2C.2D.4
    4、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
    A.B.C.D.
    5、如图,下列条件中不能判定的是( )
    A.B.C.D.
    6、如图,、是的切线,、是切点,点在上,且,则等于( )
    A.54°B.58°C.64°D.68°
    7、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
    A.2个B.3个C.4个D.5个
    8、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.
    9、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
    A.abB.a+bC.abD.a
    10、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
    A.16B.19C.24D.36
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.
    2、如图,小张同学用两个互相垂直的长方形制作了一个“中”字,请根据图中信息用含x的代数式表示该“中”字的面积__________.
    3、如图,在△ABC中,CD⊥AB,垂足为D,CE为△ACD的角平分线. 若CD=8,BC=10,且△BCE的面积为32,则点E到直线AC的距离为________.
    4、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、、所表示的有理数如图所示,则________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.
    (1)求A,B两点的坐标;
    (2)求BD的长;
    (3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.
    2、已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).

    (1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;
    (2)△AOB与△FOD是否全等,请说明理由;
    (3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.
    3、现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?
    4、已知:在△ABC中,AB=AC,直线l过点A .
    (1)如图1,∠BAC=90°,分别过点B,C作直线l的垂线段BD,CE,垂足分别为D,E.
    ①依题意补全图1;
    ②用等式表示线段DE,BD,CE之间的数量关系,并证明;
    (2)如图2,当∠BAC≠90°时,设∠BAC=α(0°< α <180°),作∠CEA=∠BDA=α,点D,E在直线l上,直接用等式表示线段DE,BD,CE之间的数量关系为 .
    5、已知关于的二次函数.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;
    (2)若,两点在该二次函数的图象上,直接写出与的大小关系;
    (3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
    【详解】
    A、不等式中含有两个未知数,不符合题意;
    B、符合一元一次不等式的定义,故符合题意;
    C、没有未知数,不符合题意;
    D、未知数的最高次数是2,不是1,故不符合题意.
    故选:B
    【点睛】
    本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
    2、B
    【分析】
    由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
    【详解】
    解:选项A是四棱柱的展开图,故A不符合题意;
    选项B是圆锥的展开图,故B符合题意;
    选项C是三棱柱的展开图,故C不符合题意;
    选项D是圆柱的展开图,故D不符合题意;
    故选B
    【点睛】
    本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
    3、B
    【分析】
    根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
    【详解】
    解:∵和是同类项,且它们的和为0,
    ∴2+m=3,n-1=-3,
    解得m=1,n=-2,
    ∴mn=-2,
    故选:B.
    【点睛】
    此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
    4、B
    【分析】
    根据三角形的中线的定义判断即可.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:∵AD、BE、CF是△ABC的三条中线,
    ∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
    故A、C、D都不一定正确;B正确.
    故选:B.
    【点睛】
    本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    5、A
    【分析】
    根据平行线的判定逐个判断即可.
    【详解】
    解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
    ∴∠3=∠5,
    因为”同旁内角互补,两直线平行“,
    所以本选项不能判断AB∥CD;
    B、∵∠3=∠4,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    C、∵,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    D、∵∠1=∠5,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    故选:A.
    【点睛】
    本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
    6、C
    【分析】
    连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
    【详解】
    解:连接,,如下图:

    ∵PA、PB是的切线,A、B是切点

    ∴由四边形的内角和可得:
    故选C.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
    7、C
    【分析】
    设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
    【详解】
    解:设原两位数的个位为 十位为 则这个两位数为
    交换其个位数与十位数的位置,所得新两位数为 则

    整理得:
    为正整数,且
    或或或
    所以这个两位数为:
    故选C
    【点睛】
    本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
    8、A
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.
    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    9、B
    【分析】
    先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    判定和性质求出答案.
    【详解】
    解:∵△ABC、△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵AF=CF,
    ∴∠ABD=∠CBD=∠ACE=30°,
    ∴点E在射线CE上运动(∠ACE=30°),
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
    ∵CA=CM,∠ACM=60°,
    ∴△ACM是等边三角形,
    ∴△ACM≌△ACB,
    ∴FM=FB=b,
    ∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
    故选:B.
    【点睛】
    此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
    10、C
    【分析】
    分别求出各视图的面积,故可求出表面积.
    【详解】
    由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
    故表面积为2×(4+3+5)=24
    故选C.
    【点睛】
    此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
    二、填空题
    1、
    【解析】
    【分析】
    如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.
    【详解】
    解:如图,过点B向AO作垂线交点为C,O到AB的距离为h
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵,,,

    故答案为:.
    【点睛】
    本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.
    2、27x-27##-27+27x
    【解析】
    【分析】
    用两个互相垂直的长方形的面积之和减去重叠部分长方形的面积即可求解.
    【详解】
    解:“中”字的面积=3×3x+9×2x-3×9=9x+18x-27=27x-27,
    故答案为:27x-27
    【点睛】
    此题考查列代数式,掌握长方形的面积表示方法是解答此题的关键.
    3、2
    【解析】
    【分析】
    过点E作EF⊥AC于点F,根据角平分线的性质定理可得DE=EF,再由勾股定理可得BD=6,然后根据△BCE的面积为32,可得BE=8,即可求解.
    【详解】
    解:如图,过点E作EF⊥AC于点F,
    ∵CE为△ACD的角平分线.CD⊥AB,
    ∴DE=EF,
    在 中,CD=8,BC=10,
    ∴ ,
    ∵△BCE的面积为32,
    ∴ ,
    ∴BE=8,
    ∴EF=DE=BE-BD=2,
    即点E到直线AC的距离为2.
    故答案为:2
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题主要考查了角平分线的性质定理,勾股定理,熟练掌握角平分线的性质定理,勾股定理是解题的关键.
    4、15
    【解析】
    【分析】
    通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
    【详解】
    解:12月1日的温差:
    12月2日的温差:
    12月3日的温差:
    12月4日的温差:
    12月5日的温差:

    最大温差是15,
    故答案为:15.
    【点睛】
    此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
    5、
    【解析】
    【分析】
    根据数轴确定,得出,然后化去绝对值符号,去括号合并同类项即可.
    【详解】
    解:根据数轴得,
    ∴,
    ∴.
    故答案为:.
    【点睛】
    本题考查数轴上点表示数,化简绝对值,整式加减运算,掌握数轴上点表示数,化简绝对值,整式加减运算,关键是利用数轴得出.
    三、解答题
    1、
    (1),
    (2)
    (3),,,,,,,
    【分析】
    (1)先根据一次函数图象的平移可得直线的函数解析式,再分别求出时的值、时的值即可得;
    (2)设点的坐标为,从而可得,再根据线段垂直平分线的判定与性质可得,建立方程求出的值,由此即可得;
    (3)分①点在轴上,②点在轴上两种情况,分别根据建立方程,解方程即可得.
    (1)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:由题意得:直线的函数解析式为,
    当时,,解得,即,
    当时,,即;
    (2)
    解:设点的坐标为,
    ,,
    点为线段的中点,,
    垂直平分,
    ,即,
    解得,
    则;
    (3)
    解:由题意,分以下两种情况:
    ①当点在轴上时,设点的坐标为,
    则,


    (Ⅰ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或;
    (Ⅱ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或(与点重合,舍去);
    (Ⅲ)当时,为等腰三角形,
    则,解得,
    此时点的坐标为;
    ②当点在轴上时,设点的坐标为,
    则,


    (Ⅰ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或(与点重合,舍去);
    (Ⅱ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或;
    (Ⅲ)当时,为等腰三角形,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    则,解得,
    此时点的坐标为;
    综上,所有满足条件的点的坐标为,,,,,,,.
    【点睛】
    本题考查了一次函数图象的平移、线段垂直平分线的判定与性质、等腰三角形、两点之间的距离公式等知识点,较难的是题(3),正确分情况讨论是解题关键.
    2、
    (1)E(,)
    (2)△AOB≌△FOD,理由见详解;
    (3)P(0,-3)或(4,1)或(,).
    【分析】
    (1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D的坐标,然后根据点E到两坐标轴的距离相等,得到OE平分∠BOC,进而求出点E的坐标即可;
    (2)首先求出直线DE的解析式,得到点F的坐标,即可证明△AOB≌△FOD;
    (3)首先求出直线GC的解析式,求出AB的长,设P(m,m-3),分类讨论①当AB=AP时,②当AB=BP时,③当AP=BP时,分别求出m的值即可解答.
    (1)
    解: 连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,
    当y=0时,-3x+3=0,
    解得x=1,
    ∴A(1,0),
    当x=0时,y=3,
    ∴OB=3,B(0,3),
    ∵点D与点C关于y轴对称,C(3,0),OC=3,
    ∴D(-3,0),
    ∵点E到两坐标轴的距离相等,
    ∴EG=EH,
    ∵EH⊥OC,EG⊥OC,
    ∴OE平分∠BOC,
    ∵OB=OC=3,
    ∴CE=BE,
    ∴E为BC的中点,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴E(,);
    (2)
    解: △AOB≌△FOD,
    设直线DE表达式为y=kx+b,
    则,
    解得:,
    ∴y=x+1,
    ∵F是直线DE与y轴的交点,
    ∴F(0,1),
    ∴OF=OA=1,
    ∵OB=OD=3,∠AOB=∠FOD=90°,
    ∴△AOB≌△FOD;
    (3)
    解:∵点G与点B关于x轴对称,B(0,3),
    ∴点G(0,-3),
    ∵C(3,0),
    设直线GC的解析式为:y=ax+c,

    解得:,
    ∴y=x-3,
    AB== ,
    设P(m,m-3),
    ①当AB=AP时,
    =
    整理得:m2-4m=0,
    解得:m1=0,m2=4,
    ∴P(0,-3)或(4,1),
    ②当AB=BP时,=
    m2-6m+13=0,
    △<0
    故不存在,
    ③当AP=BP时,
    =,
    解得:m=,
    ∴P(, ),
    综上所述P(0,-3)或(4,1)或(,),
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此题主要考查待定系数法求一次函数,一次函数与坐标轴的交点,全等三角形的判定,勾股定理.
    3、面值为5元得人民币由12张,面值为2元得人民币由20张.
    【分析】
    设面值为5元得人民币由张,面值为2元得人民币由张,然后由面值共100元,列出方程,解方程即可.
    【详解】
    解答:解:设面值为5元得人民币由张,面值为2元得人民币由张,
    根据题意得:,
    解得:(张,
    (张.
    答:面值为5元得人民币由12张,面值为2元得人民币由20张.
    【点睛】
    此题属于一元一次方程的应用题,关键是由题意列出方程.
    4、
    (1)①见详解;②结论为DE=BD+CE,证明见详解;
    (2)DE=BD+CE.证明见详解.
    【分析】
    (1)①依题意在图1作出CE、BD ,标出直角符号,垂足即可;
    ②结论为DE=BD+CE,先证∠ECA=∠BAD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD,即可;
    (2)DE=BD+CE.根据∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,得出∠CAE=∠ABD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD即可.
    (1)
    解:①依题意补全图1如图;
    ②结论为DE=BD+CE,
    证明:∵CE⊥l,BD⊥l,
    ∴∠CEA=∠BDA=90°,
    ∴∠ECA+∠CAE=90°,
    ∵∠BAC=90°,
    ∴∠CAE+∠BAD=90°
    ∴∠ECA=∠BAD,
    在△ECA和△DAB中,

    ∴△ECA≌△DAB(AAS),
    ∴EA=BD,CE=AD,
    ∴ED=EA+AD=BD+CE;
    (2)
    DE=BD+CE.
    证明:∵∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,
    ∴∠CAE+∠BAD=180°-α,∠BAD+∠ABD=180°-α,
    ∴∠CAE=∠ABD,
    在△ECA和△DAB中,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴△ECA≌△DAB(AAS),
    ∴EA=BD,CE=AD,
    ∴ED=EA+AD=BD+CE;
    故答案为:ED= BD+CE.
    【点睛】
    本题考查一线三等角,三角形内角和,平角,三角形全等判定与性质,掌握一线三等角特征,三角形内角和,平角,三角形全等判定方法与性质是解题关键.
    5、
    (1)见解析
    (2)
    (3)的值为1或-5
    【分析】
    (1)计算判别式的值,得到,即可判定;
    (2)计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;
    (3)先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可.
    (1)
    证明:令,则

    ∴不论为何实数,方程有两个不相等的实数根
    ∴无论为何实数,该二次函数的图象与轴总有两个公共点
    (2)
    解:二次函数的对称轴为:直线
    ∵,抛物线开口向上
    ∴抛物线上的点离对称轴越远对应的函数值越大

    ∴M点到对称轴的距离为:1
    N点到对称轴的距离为:2

    (3)
    解:∵抛物线
    ∴沿轴翻折后的函数解析式为
    ∴该抛物线的对称轴为直线
    ①若,即,则当时,有最小值

    解得,


    ②若,即,则当时,有最小值-1
    不合题意,舍去
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ③若,,则当时,有最小值

    解得,


    综上,的值为1或-5
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键.

    相关试卷

    【历年真题】湖南省益阳市中考数学模拟真题测评 A卷(含答案详解):

    这是一份【历年真题】湖南省益阳市中考数学模拟真题测评 A卷(含答案详解),共25页。试卷主要包含了生活中常见的探照灯等内容,欢迎下载使用。

    【历年真题】湖南省武冈市中考数学五年真题汇总 卷(Ⅲ)(含详解):

    这是一份【历年真题】湖南省武冈市中考数学五年真题汇总 卷(Ⅲ)(含详解),共27页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。

    【历年真题】湖南省武冈市中考数学模拟真题 (B)卷(精选):

    这是一份【历年真题】湖南省武冈市中考数学模拟真题 (B)卷(精选),共23页。试卷主要包含了单项式的次数是,代数式的意义是,利用如图①所示的长为a等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map